GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction
Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction....
Gespeichert in:
Veröffentlicht in: | Construction management and economics 2003-04, Vol.21 (3), p.257-266 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 3 |
container_start_page | 257 |
container_title | Construction management and economics |
container_volume | 21 |
creator | Tam, C. M. Tong, Thomas K. L. |
description | Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models. |
doi_str_mv | 10.1080/0144619032000049665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0144619032000049665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27891430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxQdR8Fn9BG6CC3ej-Td5k43wKFotpd1UcBcymeRNyswkJpnW56f3Tl9xIcUGkhvC7xxO7q2qtwR_ILjFHzHhXBCJGcWwuBSieVZtCBei5oz9eF5tVqIGhL2sXuV8s1IUy01Vznb17vISTaG3I3IhoRCLn_xvP-9RGSwag9HFhzmj4FAJdzYhk_RskZ57lJcYxwOKwc8l36sHvx_q5LNFcelGb9AQlrx6GbAoaTGr1-vqhdNjtm8e6kn1_cvn69Ov9cXV2bfT3UVtmKSldg731mLZtpxgqVssupZx2mPZNJSIBjvet8Jg21gqtKRMuI4K15hm27HONOyken_0jSn8XGwuavLZ2HGE_BBL0W0rCWcYwHf_gDdhSTNkU5QwKsRWMoDYETIp5JysUzH5SaeDIlitY1CPjAFU50dVstGav5KiHXRk2hd1q5imBI7DesGYQfGw1xrXp2arIIEaygRm8mjmZ2j2pO9CGnvwOowhOZiK8fmxEKr8KqD99KSW_e8nfwBkBbns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213266793</pqid></control><display><type>article</type><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Tam, C. M. ; Tong, Thomas K. L.</creator><creatorcontrib>Tam, C. M. ; Tong, Thomas K. L.</creatorcontrib><description>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</description><identifier>ISSN: 0144-6193</identifier><identifier>EISSN: 1466-433X</identifier><identifier>DOI: 10.1080/0144619032000049665</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Affordable housing ; Algorithms ; Construction ; Cranes & hoists ; Genetic Algorithms ; High rise buildings ; Neural networks ; Public housing ; Public Housing Construction ; Site Layout ; Site planning ; Studies ; Tower Crane</subject><ispartof>Construction management and economics, 2003-04, Vol.21 (3), p.257-266</ispartof><rights>Copyright Taylor & Francis Group, LLC 2003</rights><rights>Copyright E. & F.N. Spon Apr/May 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</citedby><cites>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4008,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafconmgt/v_3a21_3ay_3a2003_3ai_3a3_3ap_3a257-266.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Tam, C. M.</creatorcontrib><creatorcontrib>Tong, Thomas K. L.</creatorcontrib><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><title>Construction management and economics</title><description>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</description><subject>Affordable housing</subject><subject>Algorithms</subject><subject>Construction</subject><subject>Cranes & hoists</subject><subject>Genetic Algorithms</subject><subject>High rise buildings</subject><subject>Neural networks</subject><subject>Public housing</subject><subject>Public Housing Construction</subject><subject>Site Layout</subject><subject>Site planning</subject><subject>Studies</subject><subject>Tower Crane</subject><issn>0144-6193</issn><issn>1466-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU9rFTEUxQdR8Fn9BG6CC3ej-Td5k43wKFotpd1UcBcymeRNyswkJpnW56f3Tl9xIcUGkhvC7xxO7q2qtwR_ILjFHzHhXBCJGcWwuBSieVZtCBei5oz9eF5tVqIGhL2sXuV8s1IUy01Vznb17vISTaG3I3IhoRCLn_xvP-9RGSwag9HFhzmj4FAJdzYhk_RskZ57lJcYxwOKwc8l36sHvx_q5LNFcelGb9AQlrx6GbAoaTGr1-vqhdNjtm8e6kn1_cvn69Ov9cXV2bfT3UVtmKSldg731mLZtpxgqVssupZx2mPZNJSIBjvet8Jg21gqtKRMuI4K15hm27HONOyken_0jSn8XGwuavLZ2HGE_BBL0W0rCWcYwHf_gDdhSTNkU5QwKsRWMoDYETIp5JysUzH5SaeDIlitY1CPjAFU50dVstGav5KiHXRk2hd1q5imBI7DesGYQfGw1xrXp2arIIEaygRm8mjmZ2j2pO9CGnvwOowhOZiK8fmxEKr8KqD99KSW_e8nfwBkBbns</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Tam, C. M.</creator><creator>Tong, Thomas K. L.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis Journals</general><general>E. & F.N. Spon</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200304</creationdate><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><author>Tam, C. M. ; Tong, Thomas K. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Affordable housing</topic><topic>Algorithms</topic><topic>Construction</topic><topic>Cranes & hoists</topic><topic>Genetic Algorithms</topic><topic>High rise buildings</topic><topic>Neural networks</topic><topic>Public housing</topic><topic>Public Housing Construction</topic><topic>Site Layout</topic><topic>Site planning</topic><topic>Studies</topic><topic>Tower Crane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam, C. M.</creatorcontrib><creatorcontrib>Tong, Thomas K. L.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Construction management and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam, C. M.</au><au>Tong, Thomas K. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</atitle><jtitle>Construction management and economics</jtitle><date>2003-04</date><risdate>2003</risdate><volume>21</volume><issue>3</issue><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0144-6193</issn><eissn>1466-433X</eissn><abstract>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/0144619032000049665</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-6193 |
ispartof | Construction management and economics, 2003-04, Vol.21 (3), p.257-266 |
issn | 0144-6193 1466-433X |
language | eng |
recordid | cdi_crossref_primary_10_1080_0144619032000049665 |
source | RePEc; EBSCOhost Business Source Complete |
subjects | Affordable housing Algorithms Construction Cranes & hoists Genetic Algorithms High rise buildings Neural networks Public housing Public Housing Construction Site Layout Site planning Studies Tower Crane |
title | GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GA-ANN%20model%20for%20optimizing%20the%20locations%20of%20tower%20crane%20and%20supply%20points%20for%20high-rise%20public%20housing%20construction&rft.jtitle=Construction%20management%20and%20economics&rft.au=Tam,%20C.%20M.&rft.date=2003-04&rft.volume=21&rft.issue=3&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0144-6193&rft.eissn=1466-433X&rft_id=info:doi/10.1080/0144619032000049665&rft_dat=%3Cproquest_cross%3E27891430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213266793&rft_id=info:pmid/&rfr_iscdi=true |