GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction

Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction management and economics 2003-04, Vol.21 (3), p.257-266
Hauptverfasser: Tam, C. M., Tong, Thomas K. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 3
container_start_page 257
container_title Construction management and economics
container_volume 21
creator Tam, C. M.
Tong, Thomas K. L.
description Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.
doi_str_mv 10.1080/0144619032000049665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0144619032000049665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27891430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</originalsourceid><addsrcrecordid>eNqFkU9rFTEUxQdR8Fn9BG6CC3ej-Td5k43wKFotpd1UcBcymeRNyswkJpnW56f3Tl9xIcUGkhvC7xxO7q2qtwR_ILjFHzHhXBCJGcWwuBSieVZtCBei5oz9eF5tVqIGhL2sXuV8s1IUy01Vznb17vISTaG3I3IhoRCLn_xvP-9RGSwag9HFhzmj4FAJdzYhk_RskZ57lJcYxwOKwc8l36sHvx_q5LNFcelGb9AQlrx6GbAoaTGr1-vqhdNjtm8e6kn1_cvn69Ov9cXV2bfT3UVtmKSldg731mLZtpxgqVssupZx2mPZNJSIBjvet8Jg21gqtKRMuI4K15hm27HONOyken_0jSn8XGwuavLZ2HGE_BBL0W0rCWcYwHf_gDdhSTNkU5QwKsRWMoDYETIp5JysUzH5SaeDIlitY1CPjAFU50dVstGav5KiHXRk2hd1q5imBI7DesGYQfGw1xrXp2arIIEaygRm8mjmZ2j2pO9CGnvwOowhOZiK8fmxEKr8KqD99KSW_e8nfwBkBbns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213266793</pqid></control><display><type>article</type><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><source>RePEc</source><source>EBSCOhost Business Source Complete</source><creator>Tam, C. M. ; Tong, Thomas K. L.</creator><creatorcontrib>Tam, C. M. ; Tong, Thomas K. L.</creatorcontrib><description>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</description><identifier>ISSN: 0144-6193</identifier><identifier>EISSN: 1466-433X</identifier><identifier>DOI: 10.1080/0144619032000049665</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Affordable housing ; Algorithms ; Construction ; Cranes &amp; hoists ; Genetic Algorithms ; High rise buildings ; Neural networks ; Public housing ; Public Housing Construction ; Site Layout ; Site planning ; Studies ; Tower Crane</subject><ispartof>Construction management and economics, 2003-04, Vol.21 (3), p.257-266</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2003</rights><rights>Copyright E. &amp; F.N. Spon Apr/May 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</citedby><cites>FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4008,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafconmgt/v_3a21_3ay_3a2003_3ai_3a3_3ap_3a257-266.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Tam, C. M.</creatorcontrib><creatorcontrib>Tong, Thomas K. L.</creatorcontrib><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><title>Construction management and economics</title><description>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</description><subject>Affordable housing</subject><subject>Algorithms</subject><subject>Construction</subject><subject>Cranes &amp; hoists</subject><subject>Genetic Algorithms</subject><subject>High rise buildings</subject><subject>Neural networks</subject><subject>Public housing</subject><subject>Public Housing Construction</subject><subject>Site Layout</subject><subject>Site planning</subject><subject>Studies</subject><subject>Tower Crane</subject><issn>0144-6193</issn><issn>1466-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU9rFTEUxQdR8Fn9BG6CC3ej-Td5k43wKFotpd1UcBcymeRNyswkJpnW56f3Tl9xIcUGkhvC7xxO7q2qtwR_ILjFHzHhXBCJGcWwuBSieVZtCBei5oz9eF5tVqIGhL2sXuV8s1IUy01Vznb17vISTaG3I3IhoRCLn_xvP-9RGSwag9HFhzmj4FAJdzYhk_RskZ57lJcYxwOKwc8l36sHvx_q5LNFcelGb9AQlrx6GbAoaTGr1-vqhdNjtm8e6kn1_cvn69Ov9cXV2bfT3UVtmKSldg731mLZtpxgqVssupZx2mPZNJSIBjvet8Jg21gqtKRMuI4K15hm27HONOyken_0jSn8XGwuavLZ2HGE_BBL0W0rCWcYwHf_gDdhSTNkU5QwKsRWMoDYETIp5JysUzH5SaeDIlitY1CPjAFU50dVstGav5KiHXRk2hd1q5imBI7DesGYQfGw1xrXp2arIIEaygRm8mjmZ2j2pO9CGnvwOowhOZiK8fmxEKr8KqD99KSW_e8nfwBkBbns</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Tam, C. M.</creator><creator>Tong, Thomas K. L.</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis Journals</general><general>E. &amp; F.N. Spon</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200304</creationdate><title>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</title><author>Tam, C. M. ; Tong, Thomas K. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ff0dee09884109a806b8342d095521650f4d86c0e5e26a9236fb26f5c57b3bc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Affordable housing</topic><topic>Algorithms</topic><topic>Construction</topic><topic>Cranes &amp; hoists</topic><topic>Genetic Algorithms</topic><topic>High rise buildings</topic><topic>Neural networks</topic><topic>Public housing</topic><topic>Public Housing Construction</topic><topic>Site Layout</topic><topic>Site planning</topic><topic>Studies</topic><topic>Tower Crane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tam, C. M.</creatorcontrib><creatorcontrib>Tong, Thomas K. L.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Construction management and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tam, C. M.</au><au>Tong, Thomas K. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction</atitle><jtitle>Construction management and economics</jtitle><date>2003-04</date><risdate>2003</risdate><volume>21</volume><issue>3</issue><spage>257</spage><epage>266</epage><pages>257-266</pages><issn>0144-6193</issn><eissn>1466-433X</eissn><abstract>Site layout planning is a complicated issue due to the existence of a vast number of trades and inter-related planning constraints. In this paper, artificial neural networks are used to model the non-linear operations of a key site facility: a tower crane - for high-rise public housing construction. Then genetic algorithms are used to determine the locations of the tower crane, supply points and demand points by optimizing the transportation time and costs. The scope of this study confines to a defined area of construction: the structural concrete-frame construction stage of public housing projects. The developed genetic algorithm model for site facility layout and the artificial neural network model for predicting tower-crane operations are evaluated using a practical example. The optimization results of the example are very promising and it demonstrates the application value of the models.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/0144619032000049665</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-6193
ispartof Construction management and economics, 2003-04, Vol.21 (3), p.257-266
issn 0144-6193
1466-433X
language eng
recordid cdi_crossref_primary_10_1080_0144619032000049665
source RePEc; EBSCOhost Business Source Complete
subjects Affordable housing
Algorithms
Construction
Cranes & hoists
Genetic Algorithms
High rise buildings
Neural networks
Public housing
Public Housing Construction
Site Layout
Site planning
Studies
Tower Crane
title GA-ANN model for optimizing the locations of tower crane and supply points for high-rise public housing construction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A44%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GA-ANN%20model%20for%20optimizing%20the%20locations%20of%20tower%20crane%20and%20supply%20points%20for%20high-rise%20public%20housing%20construction&rft.jtitle=Construction%20management%20and%20economics&rft.au=Tam,%20C.%20M.&rft.date=2003-04&rft.volume=21&rft.issue=3&rft.spage=257&rft.epage=266&rft.pages=257-266&rft.issn=0144-6193&rft.eissn=1466-433X&rft_id=info:doi/10.1080/0144619032000049665&rft_dat=%3Cproquest_cross%3E27891430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213266793&rft_id=info:pmid/&rfr_iscdi=true