Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model

Temperature values derived from Meteosat are an indication of emitted long-wave radiation, and are not a true indication of ambient air temperature. The authors believe that Solar Zenith Angle (SZA) can be used as a proxy for solar energy reaching the ground surface, and its subsequent effects upon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of remote sensing 1999-01, Vol.20 (6), p.1125-1132
Hauptverfasser: Cresswell, M. P., Morse, A. P., Thomson, M. C., Connor, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature values derived from Meteosat are an indication of emitted long-wave radiation, and are not a true indication of ambient air temperature. The authors believe that Solar Zenith Angle (SZA) can be used as a proxy for solar energy reaching the ground surface, and its subsequent effects upon the land surface temperature detected by Meteosat. Raw satellite temperatures often overestimate the actual screen temperature during the day, and underestimate at night. By using a statistical model which relates Meteosat and WMO screen temperature deviations, and SZA values, it has been possible to generate a correction algorithm which minimizes these differences. The algorithm generates a new proxy value, being a simulated ambient (screen) air temperature. The algorithms achieve an accuracy of within 3 C for over 70% of the Meteosat temperatures processed. The operational use of this algorithm requires only the raw Meteosat temperature value, and the SZA. Such temperature corrections are useful for a wide range of environmental monitoring applications. An example is in the field of vector-borne disease modelling which requires proxies for temperature across large regions, and where more conventional meteorological stations are inadequate.
ISSN:0143-1161
1366-5901
DOI:10.1080/014311699212885