Urban land cover multi-level region-based classification of VHR data by selecting relevant features

The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne senso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of remote sensing 2006-03, Vol.27 (6), p.1035-1051
Hauptverfasser: Carleer, A. P., Wolff, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1051
container_issue 6
container_start_page 1035
container_title International journal of remote sensing
container_volume 27
creator Carleer, A. P.
Wolff, E.
description The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.
doi_str_mv 10.1080/01431160500297956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01431160500297956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29567169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gLdc9LY6yW4-Cl5E1AqCIOp1mU2zEkk3NUnV_ntTqngo6Glg5nlmmJeQIwanDDScAWtqxiQIAD5WYyG3yIjVUlZiDGybjFbzqgBsl-yl9AoAUgk1IuYpdjhQj8OUmvBuI50tfHaVt-_W02hfXBiqDpMtY48pud4ZzKVJQ0-fJw90ihlpt6TJemuyG16KVGQcMu0t5kW06YDs9OiTPfyu--Tp-urxclLd3d_cXl7cVaYBlasGlelqwFoywZTVDddTIYxslNaCc9F1QnfAmUVQRmtQEjjnvRYgRYcC631yst47j-FtYVNuZy4Z68tzNixSy0ssislxAdkaNDGkFG3fzqObYVy2DNpVnO1GnMU5_l6OyaDvIw7GpV9RSdGAZoU7X3Nu6EOc4UeIftpmXPoQf6T6rzPqX33DavNnrr8A_M2ZGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29567169</pqid></control><display><type>article</type><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><source>Taylor &amp; Francis E-Journals</source><creator>Carleer, A. P. ; Wolff, E.</creator><creatorcontrib>Carleer, A. P. ; Wolff, E.</creatorcontrib><description>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160500297956</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Areal geology. Maps ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Geologic maps, cartography ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>International journal of remote sensing, 2006-03, Vol.27 (6), p.1035-1051</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</citedby><cites>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01431160500297956$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01431160500297956$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17654081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carleer, A. P.</creatorcontrib><creatorcontrib>Wolff, E.</creatorcontrib><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><title>International journal of remote sensing</title><description>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Areal geology. Maps</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Geologic maps, cartography</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gLdc9LY6yW4-Cl5E1AqCIOp1mU2zEkk3NUnV_ntTqngo6Glg5nlmmJeQIwanDDScAWtqxiQIAD5WYyG3yIjVUlZiDGybjFbzqgBsl-yl9AoAUgk1IuYpdjhQj8OUmvBuI50tfHaVt-_W02hfXBiqDpMtY48pud4ZzKVJQ0-fJw90ihlpt6TJemuyG16KVGQcMu0t5kW06YDs9OiTPfyu--Tp-urxclLd3d_cXl7cVaYBlasGlelqwFoywZTVDddTIYxslNaCc9F1QnfAmUVQRmtQEjjnvRYgRYcC631yst47j-FtYVNuZy4Z68tzNixSy0ssislxAdkaNDGkFG3fzqObYVy2DNpVnO1GnMU5_l6OyaDvIw7GpV9RSdGAZoU7X3Nu6EOc4UeIftpmXPoQf6T6rzPqX33DavNnrr8A_M2ZGA</recordid><startdate>20060320</startdate><enddate>20060320</enddate><creator>Carleer, A. P.</creator><creator>Wolff, E.</creator><general>Taylor &amp; Francis</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060320</creationdate><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><author>Carleer, A. P. ; Wolff, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Areal geology. Maps</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Geologic maps, cartography</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carleer, A. P.</creatorcontrib><creatorcontrib>Wolff, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carleer, A. P.</au><au>Wolff, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</atitle><jtitle>International journal of remote sensing</jtitle><date>2006-03-20</date><risdate>2006</risdate><volume>27</volume><issue>6</issue><spage>1035</spage><epage>1051</epage><pages>1035-1051</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01431160500297956</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-1161
ispartof International journal of remote sensing, 2006-03, Vol.27 (6), p.1035-1051
issn 0143-1161
1366-5901
language eng
recordid cdi_crossref_primary_10_1080_01431160500297956
source Taylor & Francis E-Journals
subjects Animal, plant and microbial ecology
Applied geophysics
Areal geology. Maps
Biological and medical sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Geologic maps, cartography
Internal geophysics
Teledetection and vegetation maps
title Urban land cover multi-level region-based classification of VHR data by selecting relevant features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20land%20cover%20multi-level%20region-based%20classification%20of%20VHR%20data%20by%20selecting%20relevant%20features&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Carleer,%20A.%20P.&rft.date=2006-03-20&rft.volume=27&rft.issue=6&rft.spage=1035&rft.epage=1051&rft.pages=1035-1051&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160500297956&rft_dat=%3Cproquest_cross%3E29567169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29567169&rft_id=info:pmid/&rfr_iscdi=true