Urban land cover multi-level region-based classification of VHR data by selecting relevant features
The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne senso...
Gespeichert in:
Veröffentlicht in: | International journal of remote sensing 2006-03, Vol.27 (6), p.1035-1051 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1051 |
---|---|
container_issue | 6 |
container_start_page | 1035 |
container_title | International journal of remote sensing |
container_volume | 27 |
creator | Carleer, A. P. Wolff, E. |
description | The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation. |
doi_str_mv | 10.1080/01431160500297956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01431160500297956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29567169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gLdc9LY6yW4-Cl5E1AqCIOp1mU2zEkk3NUnV_ntTqngo6Glg5nlmmJeQIwanDDScAWtqxiQIAD5WYyG3yIjVUlZiDGybjFbzqgBsl-yl9AoAUgk1IuYpdjhQj8OUmvBuI50tfHaVt-_W02hfXBiqDpMtY48pud4ZzKVJQ0-fJw90ihlpt6TJemuyG16KVGQcMu0t5kW06YDs9OiTPfyu--Tp-urxclLd3d_cXl7cVaYBlasGlelqwFoywZTVDddTIYxslNaCc9F1QnfAmUVQRmtQEjjnvRYgRYcC631yst47j-FtYVNuZy4Z68tzNixSy0ssislxAdkaNDGkFG3fzqObYVy2DNpVnO1GnMU5_l6OyaDvIw7GpV9RSdGAZoU7X3Nu6EOc4UeIftpmXPoQf6T6rzPqX33DavNnrr8A_M2ZGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29567169</pqid></control><display><type>article</type><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><source>Taylor & Francis E-Journals</source><creator>Carleer, A. P. ; Wolff, E.</creator><creatorcontrib>Carleer, A. P. ; Wolff, E.</creatorcontrib><description>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160500297956</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Areal geology. Maps ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Geologic maps, cartography ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>International journal of remote sensing, 2006-03, Vol.27 (6), p.1035-1051</ispartof><rights>Copyright Taylor & Francis Group, LLC 2006</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</citedby><cites>FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01431160500297956$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01431160500297956$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17654081$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Carleer, A. P.</creatorcontrib><creatorcontrib>Wolff, E.</creatorcontrib><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><title>International journal of remote sensing</title><description>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Areal geology. Maps</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Geologic maps, cartography</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gLdc9LY6yW4-Cl5E1AqCIOp1mU2zEkk3NUnV_ntTqngo6Glg5nlmmJeQIwanDDScAWtqxiQIAD5WYyG3yIjVUlZiDGybjFbzqgBsl-yl9AoAUgk1IuYpdjhQj8OUmvBuI50tfHaVt-_W02hfXBiqDpMtY48pud4ZzKVJQ0-fJw90ihlpt6TJemuyG16KVGQcMu0t5kW06YDs9OiTPfyu--Tp-urxclLd3d_cXl7cVaYBlasGlelqwFoywZTVDddTIYxslNaCc9F1QnfAmUVQRmtQEjjnvRYgRYcC631yst47j-FtYVNuZy4Z68tzNixSy0ssislxAdkaNDGkFG3fzqObYVy2DNpVnO1GnMU5_l6OyaDvIw7GpV9RSdGAZoU7X3Nu6EOc4UeIftpmXPoQf6T6rzPqX33DavNnrr8A_M2ZGA</recordid><startdate>20060320</startdate><enddate>20060320</enddate><creator>Carleer, A. P.</creator><creator>Wolff, E.</creator><general>Taylor & Francis</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060320</creationdate><title>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</title><author>Carleer, A. P. ; Wolff, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4a7cb30a361517e8428d55c647885225bb58b021ea07c880760222f85065ba5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Areal geology. Maps</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Geologic maps, cartography</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carleer, A. P.</creatorcontrib><creatorcontrib>Wolff, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carleer, A. P.</au><au>Wolff, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban land cover multi-level region-based classification of VHR data by selecting relevant features</atitle><jtitle>International journal of remote sensing</jtitle><date>2006-03-20</date><risdate>2006</risdate><volume>27</volume><issue>6</issue><spage>1035</spage><epage>1051</epage><pages>1035-1051</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>The limited spatial resolution of satellite images used to be a problem for the adequate definition of the urban environment. This problem was expected to be solved with the availability of very high spatial resolution satellite images (IKONOS, QuickBird, OrbView-3). However, these space-borne sensors are limited to four multi-spectral bands and may have specific limitations as far as detailed urban area mapping is concerned. It is therefore essential to combine spectral information with other information, such as the features used in visual interpretation (e.g. the degree and kind of texture and the shape) transposed to digital analysis. In this study, a feature selection method is used to show which features are useful for particular land-cover classes. These features are used to improve the land-cover classification of very high spatial resolution satellite images of urban areas. The useful features are compared with a visual feature selection. The features are calculated after segmentation into regions that become analysis units and ease the feature calculation.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/01431160500297956</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2006-03, Vol.27 (6), p.1035-1051 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01431160500297956 |
source | Taylor & Francis E-Journals |
subjects | Animal, plant and microbial ecology Applied geophysics Areal geology. Maps Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Geologic maps, cartography Internal geophysics Teledetection and vegetation maps |
title | Urban land cover multi-level region-based classification of VHR data by selecting relevant features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20land%20cover%20multi-level%20region-based%20classification%20of%20VHR%20data%20by%20selecting%20relevant%20features&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Carleer,%20A.%20P.&rft.date=2006-03-20&rft.volume=27&rft.issue=6&rft.spage=1035&rft.epage=1051&rft.pages=1035-1051&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160500297956&rft_dat=%3Cproquest_cross%3E29567169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29567169&rft_id=info:pmid/&rfr_iscdi=true |