Incorporating texture into classification of forest species composition from airborne multispectral images
Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the...
Gespeichert in:
Veröffentlicht in: | International journal of remote sensing 2000-01, Vol.21 (1), p.61-79 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | International journal of remote sensing |
container_volume | 21 |
creator | Franklin, S. E. Hall, R. J. Moskal, L. M. Maudie, A. J. Lavigne, M. B. |
description | Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the extent that the addition of texture could improve spectral classification of high spatial resolution images (pixel size 1m). These images represented pure and mixed wood forest stands from ecoregions in Alberta and New Brunswick, Canada. This study employed a judicious, selective application of texture to stands within a hierarchical classification framework. In Alberta, the addition of texture made a modest improvement in classification accuracy from 60% to 65%. In New Brunswick, the application of texture to selected land cover types resulted in an overall 12% improvement in classification accuracy. The addition of image texture increased classification accuracy for high spatial detail imagery relative to low spatial detail imagery. Incorporating texture into classification also improved classification accuracies for hardwood stands more so than for softwood stands, but greater attention to stand structure and composition will be needed in future work. Classification accuracies on the order of 60-65% were achieved with simple texture derivatives, maximum likelihood decision rules and conventional classification methods. |
doi_str_mv | 10.1080/014311600210993 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_014311600210993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1230636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-54afead1a544c7a815b36e14cf0b0b13191b1b24c4427bc3c5134aecfe98a4bd3</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKtrt1m4HZs7ebTjTsRHoeBG18NNmpSUmcmQpNj-e6dWEQri6i6-8x0uh5BrYLfAZmzCQHAAxVgJrKr4CRkBV6qQFYNTMtrTYsBwTi5SWjPG1FROR2Q970yIfYiYfbei2W7zJlrquxyoaTAl77wZWOhocNSFaFOmqbfG20RNaPuQ_Bd1MbQUfdQhdpa2myb7fSxHbKhvcWXTJTlz2CR79X3H5P3p8e3hpVi8Ps8f7heF4UrmQgp0FpeAUggzxRlIzZUFYRzTTAOHCjToUhghyqk23EjgAq1xtpqh0Es-JpNDr4khpWhd3cfhg7irgdX7qeqjqQbj5mD0mAw2LmJnfPrVSs4UV0NMHmK-G4Zo8SPEZlln3DUh_jhH1XXe5sG7-9fjf_32CbrhkDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporating texture into classification of forest species composition from airborne multispectral images</title><source>Taylor & Francis Journals Complete</source><creator>Franklin, S. E. ; Hall, R. J. ; Moskal, L. M. ; Maudie, A. J. ; Lavigne, M. B.</creator><creatorcontrib>Franklin, S. E. ; Hall, R. J. ; Moskal, L. M. ; Maudie, A. J. ; Lavigne, M. B.</creatorcontrib><description>Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the extent that the addition of texture could improve spectral classification of high spatial resolution images (pixel size 1m). These images represented pure and mixed wood forest stands from ecoregions in Alberta and New Brunswick, Canada. This study employed a judicious, selective application of texture to stands within a hierarchical classification framework. In Alberta, the addition of texture made a modest improvement in classification accuracy from 60% to 65%. In New Brunswick, the application of texture to selected land cover types resulted in an overall 12% improvement in classification accuracy. The addition of image texture increased classification accuracy for high spatial detail imagery relative to low spatial detail imagery. Incorporating texture into classification also improved classification accuracies for hardwood stands more so than for softwood stands, but greater attention to stand structure and composition will be needed in future work. Classification accuracies on the order of 60-65% were achieved with simple texture derivatives, maximum likelihood decision rules and conventional classification methods.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/014311600210993</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Internal geophysics ; Teledetection and vegetation maps</subject><ispartof>International journal of remote sensing, 2000-01, Vol.21 (1), p.61-79</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-54afead1a544c7a815b36e14cf0b0b13191b1b24c4427bc3c5134aecfe98a4bd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/014311600210993$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/014311600210993$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1230636$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Franklin, S. E.</creatorcontrib><creatorcontrib>Hall, R. J.</creatorcontrib><creatorcontrib>Moskal, L. M.</creatorcontrib><creatorcontrib>Maudie, A. J.</creatorcontrib><creatorcontrib>Lavigne, M. B.</creatorcontrib><title>Incorporating texture into classification of forest species composition from airborne multispectral images</title><title>International journal of remote sensing</title><description>Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the extent that the addition of texture could improve spectral classification of high spatial resolution images (pixel size 1m). These images represented pure and mixed wood forest stands from ecoregions in Alberta and New Brunswick, Canada. This study employed a judicious, selective application of texture to stands within a hierarchical classification framework. In Alberta, the addition of texture made a modest improvement in classification accuracy from 60% to 65%. In New Brunswick, the application of texture to selected land cover types resulted in an overall 12% improvement in classification accuracy. The addition of image texture increased classification accuracy for high spatial detail imagery relative to low spatial detail imagery. Incorporating texture into classification also improved classification accuracies for hardwood stands more so than for softwood stands, but greater attention to stand structure and composition will be needed in future work. Classification accuracies on the order of 60-65% were achieved with simple texture derivatives, maximum likelihood decision rules and conventional classification methods.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Internal geophysics</subject><subject>Teledetection and vegetation maps</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKtrt1m4HZs7ebTjTsRHoeBG18NNmpSUmcmQpNj-e6dWEQri6i6-8x0uh5BrYLfAZmzCQHAAxVgJrKr4CRkBV6qQFYNTMtrTYsBwTi5SWjPG1FROR2Q970yIfYiYfbei2W7zJlrquxyoaTAl77wZWOhocNSFaFOmqbfG20RNaPuQ_Bd1MbQUfdQhdpa2myb7fSxHbKhvcWXTJTlz2CR79X3H5P3p8e3hpVi8Ps8f7heF4UrmQgp0FpeAUggzxRlIzZUFYRzTTAOHCjToUhghyqk23EjgAq1xtpqh0Es-JpNDr4khpWhd3cfhg7irgdX7qeqjqQbj5mD0mAw2LmJnfPrVSs4UV0NMHmK-G4Zo8SPEZlln3DUh_jhH1XXe5sG7-9fjf_32CbrhkDE</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Franklin, S. E.</creator><creator>Hall, R. J.</creator><creator>Moskal, L. M.</creator><creator>Maudie, A. J.</creator><creator>Lavigne, M. B.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Incorporating texture into classification of forest species composition from airborne multispectral images</title><author>Franklin, S. E. ; Hall, R. J. ; Moskal, L. M. ; Maudie, A. J. ; Lavigne, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-54afead1a544c7a815b36e14cf0b0b13191b1b24c4427bc3c5134aecfe98a4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Internal geophysics</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franklin, S. E.</creatorcontrib><creatorcontrib>Hall, R. J.</creatorcontrib><creatorcontrib>Moskal, L. M.</creatorcontrib><creatorcontrib>Maudie, A. J.</creatorcontrib><creatorcontrib>Lavigne, M. B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franklin, S. E.</au><au>Hall, R. J.</au><au>Moskal, L. M.</au><au>Maudie, A. J.</au><au>Lavigne, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating texture into classification of forest species composition from airborne multispectral images</atitle><jtitle>International journal of remote sensing</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>21</volume><issue>1</issue><spage>61</spage><epage>79</epage><pages>61-79</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>Although research with digital airborne remote sensing data has been undertaken in different ecoregions to classify forested areas, the potential role of such imagery in deriving information to assist forest management has not yet been fully defined. The objective of this study was to determine the extent that the addition of texture could improve spectral classification of high spatial resolution images (pixel size 1m). These images represented pure and mixed wood forest stands from ecoregions in Alberta and New Brunswick, Canada. This study employed a judicious, selective application of texture to stands within a hierarchical classification framework. In Alberta, the addition of texture made a modest improvement in classification accuracy from 60% to 65%. In New Brunswick, the application of texture to selected land cover types resulted in an overall 12% improvement in classification accuracy. The addition of image texture increased classification accuracy for high spatial detail imagery relative to low spatial detail imagery. Incorporating texture into classification also improved classification accuracies for hardwood stands more so than for softwood stands, but greater attention to stand structure and composition will be needed in future work. Classification accuracies on the order of 60-65% were achieved with simple texture derivatives, maximum likelihood decision rules and conventional classification methods.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/014311600210993</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2000-01, Vol.21 (1), p.61-79 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_crossref_primary_10_1080_014311600210993 |
source | Taylor & Francis Journals Complete |
subjects | Animal, plant and microbial ecology Applied geophysics Biological and medical sciences Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques Internal geophysics Teledetection and vegetation maps |
title | Incorporating texture into classification of forest species composition from airborne multispectral images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20texture%20into%20classification%20of%20forest%20species%20composition%20from%20airborne%20multispectral%20images&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Franklin,%20S.%20E.&rft.date=2000-01-01&rft.volume=21&rft.issue=1&rft.spage=61&rft.epage=79&rft.pages=61-79&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/014311600210993&rft_dat=%3Cpascalfrancis_cross%3E1230636%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |