Diffusional relaxation of the dislocation-inclusion repulsion

While previous analyses of the elastic interaction between dislocations and inclusions predict repulsion when the shear modulus of the inclusion exceeds that of the matrix, experimental observations in oxide-dispersion-strengthened alloys show that dislocations are able to reach the surface of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties Physics of condensed matter. Defects and mechanical properties, 1983-05, Vol.48 (5), p.795-809
Hauptverfasser: Srolovitz, D. J., Petkovic-luton, R. A., Litton, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 5
container_start_page 795
container_title Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties
container_volume 48
creator Srolovitz, D. J.
Petkovic-luton, R. A.
Litton, M. J.
description While previous analyses of the elastic interaction between dislocations and inclusions predict repulsion when the shear modulus of the inclusion exceeds that of the matrix, experimental observations in oxide-dispersion-strengthened alloys show that dislocations are able to reach the surface of the stiffer oxide particles. We attempt to rectify this apparent contradiction by analysing the effects of diffusion, in the vicinity of the inclusion, on the elastic interactions. The problem is divided into two parts, depending on whether the dislocation loads the inclusion predominantly in shear or hydrostatically. We show that in each case the dislocation-particle separation decays exponentially with time, the time constant being proportional to the ratio of the inclusion volume and the inclusion-matrix interfacial diffusivity for shear loading, and proportional to the ratio of the square of the inclusion radius and the bulk diffusivity for hydrostatic loading. A comparison of the time required for diffusional relaxation with that required for a dislocation to climb over an inclusion shows that relaxation dominates for most conditions likely to be encountered during high-temperature creep. When the dislocation-inclusion separation is of the order of a dislocation core diameter, the dislocation core relaxes into the inclusion-matrix interface, thereby pinning the dislocation. To unpin the dislocation, a stress of order the Orowan stress must be applied. It is suggested that the unpinning of the dislocation from the inclusion gives rise to the threshold stress for creep in dispersion-strengthened alloy systems.
doi_str_mv 10.1080/01418618308236545
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01418618308236545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1298082884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-b6dfde5959bbbe065d38b6f7a22a0ee993decbbe26b7324ac1430aee94b14c023</originalsourceid><addsrcrecordid>eNp1kEtPAyEUhYnRxFr9Ae4m0e3o5TEMJLow9Zk0caPrCcNApKFDhZlo_720VTfGFRfOd87lXoROMVxgEHAJmGHBsaAgCOUVq_bQBDMOJZeS7KPJRi8zAIfoKKUFAOAaYIKub521Y3KhV76IxqtPNeRLEWwxvJmic8kHvX0qXa_9lszcavSb6hgdWOWTOfk-p-j1_u5l9ljOnx-eZjfzUjMsh7Llne1MJSvZtq0BXnVUtNzWihAFxkhJO6OzQnhbU8KUxoyCygJrMdNA6BSd7XJXMbyPJg3NIowxfzk1mEiRZxaCZQrvKB1DStHYZhXdUsV1g6HZbKn5s6XsOf9OVkkrb6PqtUu_RslYVXOesasd5nob4lJ9hOi7ZlBrH-KPh_7f5Qu0FXob</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1298082884</pqid></control><display><type>article</type><title>Diffusional relaxation of the dislocation-inclusion repulsion</title><source>Periodicals Index Online</source><source>Taylor &amp; Francis</source><creator>Srolovitz, D. J. ; Petkovic-luton, R. A. ; Litton, M. J.</creator><creatorcontrib>Srolovitz, D. J. ; Petkovic-luton, R. A. ; Litton, M. J.</creatorcontrib><description>While previous analyses of the elastic interaction between dislocations and inclusions predict repulsion when the shear modulus of the inclusion exceeds that of the matrix, experimental observations in oxide-dispersion-strengthened alloys show that dislocations are able to reach the surface of the stiffer oxide particles. We attempt to rectify this apparent contradiction by analysing the effects of diffusion, in the vicinity of the inclusion, on the elastic interactions. The problem is divided into two parts, depending on whether the dislocation loads the inclusion predominantly in shear or hydrostatically. We show that in each case the dislocation-particle separation decays exponentially with time, the time constant being proportional to the ratio of the inclusion volume and the inclusion-matrix interfacial diffusivity for shear loading, and proportional to the ratio of the square of the inclusion radius and the bulk diffusivity for hydrostatic loading. A comparison of the time required for diffusional relaxation with that required for a dislocation to climb over an inclusion shows that relaxation dominates for most conditions likely to be encountered during high-temperature creep. When the dislocation-inclusion separation is of the order of a dislocation core diameter, the dislocation core relaxes into the inclusion-matrix interface, thereby pinning the dislocation. To unpin the dislocation, a stress of order the Orowan stress must be applied. It is suggested that the unpinning of the dislocation from the inclusion gives rise to the threshold stress for creep in dispersion-strengthened alloy systems.</description><identifier>ISSN: 0141-8610</identifier><identifier>EISSN: 1460-6992</identifier><identifier>DOI: 10.1080/01418618308236545</identifier><identifier>CODEN: PMAADG</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Defects and impurities in crystals; microstructure ; Exact sciences and technology ; Interaction between different crystal defects; gettering effect ; Physics ; Structure of solids and liquids; crystallography</subject><ispartof>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties, 1983-05, Vol.48 (5), p.795-809</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1983</rights><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-b6dfde5959bbbe065d38b6f7a22a0ee993decbbe26b7324ac1430aee94b14c023</citedby><cites>FETCH-LOGICAL-c419t-b6dfde5959bbbe065d38b6f7a22a0ee993decbbe26b7324ac1430aee94b14c023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01418618308236545$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01418618308236545$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,778,782,27852,27907,27908,59628,60417</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9445766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Petkovic-luton, R. A.</creatorcontrib><creatorcontrib>Litton, M. J.</creatorcontrib><title>Diffusional relaxation of the dislocation-inclusion repulsion</title><title>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</title><description>While previous analyses of the elastic interaction between dislocations and inclusions predict repulsion when the shear modulus of the inclusion exceeds that of the matrix, experimental observations in oxide-dispersion-strengthened alloys show that dislocations are able to reach the surface of the stiffer oxide particles. We attempt to rectify this apparent contradiction by analysing the effects of diffusion, in the vicinity of the inclusion, on the elastic interactions. The problem is divided into two parts, depending on whether the dislocation loads the inclusion predominantly in shear or hydrostatically. We show that in each case the dislocation-particle separation decays exponentially with time, the time constant being proportional to the ratio of the inclusion volume and the inclusion-matrix interfacial diffusivity for shear loading, and proportional to the ratio of the square of the inclusion radius and the bulk diffusivity for hydrostatic loading. A comparison of the time required for diffusional relaxation with that required for a dislocation to climb over an inclusion shows that relaxation dominates for most conditions likely to be encountered during high-temperature creep. When the dislocation-inclusion separation is of the order of a dislocation core diameter, the dislocation core relaxes into the inclusion-matrix interface, thereby pinning the dislocation. To unpin the dislocation, a stress of order the Orowan stress must be applied. It is suggested that the unpinning of the dislocation from the inclusion gives rise to the threshold stress for creep in dispersion-strengthened alloy systems.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Exact sciences and technology</subject><subject>Interaction between different crystal defects; gettering effect</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><issn>0141-8610</issn><issn>1460-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp1kEtPAyEUhYnRxFr9Ae4m0e3o5TEMJLow9Zk0caPrCcNApKFDhZlo_720VTfGFRfOd87lXoROMVxgEHAJmGHBsaAgCOUVq_bQBDMOJZeS7KPJRi8zAIfoKKUFAOAaYIKub521Y3KhV76IxqtPNeRLEWwxvJmic8kHvX0qXa_9lszcavSb6hgdWOWTOfk-p-j1_u5l9ljOnx-eZjfzUjMsh7Llne1MJSvZtq0BXnVUtNzWihAFxkhJO6OzQnhbU8KUxoyCygJrMdNA6BSd7XJXMbyPJg3NIowxfzk1mEiRZxaCZQrvKB1DStHYZhXdUsV1g6HZbKn5s6XsOf9OVkkrb6PqtUu_RslYVXOesasd5nob4lJ9hOi7ZlBrH-KPh_7f5Qu0FXob</recordid><startdate>198305</startdate><enddate>198305</enddate><creator>Srolovitz, D. J.</creator><creator>Petkovic-luton, R. A.</creator><creator>Litton, M. J.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HAGHG</scope><scope>JILTI</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>198305</creationdate><title>Diffusional relaxation of the dislocation-inclusion repulsion</title><author>Srolovitz, D. J. ; Petkovic-luton, R. A. ; Litton, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-b6dfde5959bbbe065d38b6f7a22a0ee993decbbe26b7324ac1430aee94b14c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Exact sciences and technology</topic><topic>Interaction between different crystal defects; gettering effect</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srolovitz, D. J.</creatorcontrib><creatorcontrib>Petkovic-luton, R. A.</creatorcontrib><creatorcontrib>Litton, M. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 12</collection><collection>Periodicals Index Online Segment 32</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srolovitz, D. J.</au><au>Petkovic-luton, R. A.</au><au>Litton, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusional relaxation of the dislocation-inclusion repulsion</atitle><jtitle>Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties</jtitle><date>1983-05</date><risdate>1983</risdate><volume>48</volume><issue>5</issue><spage>795</spage><epage>809</epage><pages>795-809</pages><issn>0141-8610</issn><eissn>1460-6992</eissn><coden>PMAADG</coden><abstract>While previous analyses of the elastic interaction between dislocations and inclusions predict repulsion when the shear modulus of the inclusion exceeds that of the matrix, experimental observations in oxide-dispersion-strengthened alloys show that dislocations are able to reach the surface of the stiffer oxide particles. We attempt to rectify this apparent contradiction by analysing the effects of diffusion, in the vicinity of the inclusion, on the elastic interactions. The problem is divided into two parts, depending on whether the dislocation loads the inclusion predominantly in shear or hydrostatically. We show that in each case the dislocation-particle separation decays exponentially with time, the time constant being proportional to the ratio of the inclusion volume and the inclusion-matrix interfacial diffusivity for shear loading, and proportional to the ratio of the square of the inclusion radius and the bulk diffusivity for hydrostatic loading. A comparison of the time required for diffusional relaxation with that required for a dislocation to climb over an inclusion shows that relaxation dominates for most conditions likely to be encountered during high-temperature creep. When the dislocation-inclusion separation is of the order of a dislocation core diameter, the dislocation core relaxes into the inclusion-matrix interface, thereby pinning the dislocation. To unpin the dislocation, a stress of order the Orowan stress must be applied. It is suggested that the unpinning of the dislocation from the inclusion gives rise to the threshold stress for creep in dispersion-strengthened alloy systems.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01418618308236545</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8610
ispartof Philosophical magazine. A, Physics of condensed matter. Defects and mechanical properties, 1983-05, Vol.48 (5), p.795-809
issn 0141-8610
1460-6992
language eng
recordid cdi_crossref_primary_10_1080_01418618308236545
source Periodicals Index Online; Taylor & Francis
subjects Condensed matter: structure, mechanical and thermal properties
Defects and impurities in crystals
microstructure
Exact sciences and technology
Interaction between different crystal defects
gettering effect
Physics
Structure of solids and liquids
crystallography
title Diffusional relaxation of the dislocation-inclusion repulsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusional%20relaxation%20of%20the%20dislocation-inclusion%20repulsion&rft.jtitle=Philosophical%20magazine.%20A,%20Physics%20of%20condensed%20matter.%20Defects%20and%20mechanical%20properties&rft.au=Srolovitz,%20D.%20J.&rft.date=1983-05&rft.volume=48&rft.issue=5&rft.spage=795&rft.epage=809&rft.pages=795-809&rft.issn=0141-8610&rft.eissn=1460-6992&rft.coden=PMAADG&rft_id=info:doi/10.1080/01418618308236545&rft_dat=%3Cproquest_cross%3E1298082884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1298082884&rft_id=info:pmid/&rfr_iscdi=true