CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS

Clathrate formation ranges of the phase diagrams of two binary systems Py-Zn(NO 3 ) 2 and Py-Cd(NO 3 ) 2 (Py = pyridine) were studied. A clathrate of composition [MPy 4 (NO 3 ) 2 ]·2Py (M = Zn, Cd) was observed in each of the systems. The space group Ccca (orthorhombic system) and the parameters of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of coordination chemistry 1996-02, Vol.37 (1-4), p.63-75
Hauptverfasser: Dyadin, Yu. A., Soldatov, D. V., Logvinenko, V. A., Lipkowski, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue 1-4
container_start_page 63
container_title Journal of coordination chemistry
container_volume 37
creator Dyadin, Yu. A.
Soldatov, D. V.
Logvinenko, V. A.
Lipkowski, J.
description Clathrate formation ranges of the phase diagrams of two binary systems Py-Zn(NO 3 ) 2 and Py-Cd(NO 3 ) 2 (Py = pyridine) were studied. A clathrate of composition [MPy 4 (NO 3 ) 2 ]·2Py (M = Zn, Cd) was observed in each of the systems. The space group Ccca (orthorhombic system) and the parameters of the unit cells of both clathrates were determined by X-ray analysis of their single crystals. The data obtained show them to be isostructural with the clathrate [NiPy 4 (NO 3 ) 2 ]·2Py whose structure is known and suggest the actual presence of the host molecules trans-[MPy 4 (NO 3 ) 2 ] (M = Zn,Cd) inside the clathrate phases. Host complexes do not form as separate compounds but can only arise in clathrate phases due to contact stabilization by the guest molecules. Both Zn- and Cd-clathrates are of constant composition and melt incongruently at 62.3(6) and 106.0(5)°C, respectively, yielding the complexes [ZnPy 3 (NO 3 ) 2 ] and [CdPy 3 (NO 3 ) 2 ], these melting congruently at 131.4(5) and 169.5(5)°C, respectively. During thermal decomposition under quasi-equilibrium conditions with different pressures of the liberating pyridine both clathrates also decompose in one stage, giving [MPy 3 (NO 3 ) 2 ] complexes. The results obtained are discussed in relation to a number of other systems with Schaeffer's and Hofmann-lwamoto's clathrates in which contact stabilization occurs or might be expected to occur.
doi_str_mv 10.1080/00958979608023541
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00958979608023541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00958979608023541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-6412a294cb8505930790ff701cfead2bbfdcbb72aa5282e50654b17952215bf83</originalsourceid><addsrcrecordid>eNp1kN1KwzAYhoMoOKcX4FluoJqkTduIJzXt1kB_RpuC20lJuwYm2yrpQHYTXrP7EUHEo4-X93m-gxeAe4weMPLRI0KM-sxj7iEQmzr4AowwIsxCts8uwejYWweAXIObYXhDCNs28Ubgk-eZDLiEpQxeRCIWgRR5BvMJjPNSQp6nsyR6hWmeRLxKohKGVSGyKeRJIOMikBGc5EV6kp6gjCM4mxciFFlkLUTGYSbkCQqy8HfLgzAVVfoDlPNSRml5C660Wg_d3fcdg2oSSR5bST4VPEisljB3Z7kOJoowp218iiizkceQ1h7Cre7UkjSNXrZN4xGlKPFJR5FLnQZ7jBKCaaN9ewzw-W9r-mEwna7fzWqjzL7GqD4OWv8Z9OA8n53VVvdmoz56s17WO7Vf90YbtW1XQ23_r38BxJJwSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS</title><source>Taylor &amp; Francis Journals Complete</source><creator>Dyadin, Yu. A. ; Soldatov, D. V. ; Logvinenko, V. A. ; Lipkowski, J.</creator><creatorcontrib>Dyadin, Yu. A. ; Soldatov, D. V. ; Logvinenko, V. A. ; Lipkowski, J.</creatorcontrib><description>Clathrate formation ranges of the phase diagrams of two binary systems Py-Zn(NO 3 ) 2 and Py-Cd(NO 3 ) 2 (Py = pyridine) were studied. A clathrate of composition [MPy 4 (NO 3 ) 2 ]·2Py (M = Zn, Cd) was observed in each of the systems. The space group Ccca (orthorhombic system) and the parameters of the unit cells of both clathrates were determined by X-ray analysis of their single crystals. The data obtained show them to be isostructural with the clathrate [NiPy 4 (NO 3 ) 2 ]·2Py whose structure is known and suggest the actual presence of the host molecules trans-[MPy 4 (NO 3 ) 2 ] (M = Zn,Cd) inside the clathrate phases. Host complexes do not form as separate compounds but can only arise in clathrate phases due to contact stabilization by the guest molecules. Both Zn- and Cd-clathrates are of constant composition and melt incongruently at 62.3(6) and 106.0(5)°C, respectively, yielding the complexes [ZnPy 3 (NO 3 ) 2 ] and [CdPy 3 (NO 3 ) 2 ], these melting congruently at 131.4(5) and 169.5(5)°C, respectively. During thermal decomposition under quasi-equilibrium conditions with different pressures of the liberating pyridine both clathrates also decompose in one stage, giving [MPy 3 (NO 3 ) 2 ] complexes. The results obtained are discussed in relation to a number of other systems with Schaeffer's and Hofmann-lwamoto's clathrates in which contact stabilization occurs or might be expected to occur.</description><identifier>ISSN: 0095-8972</identifier><identifier>EISSN: 1029-0389</identifier><identifier>DOI: 10.1080/00958979608023541</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>clathrate ; contact stabilization ; metal(II) ; phase diagram ; pyridine ; X-ray</subject><ispartof>Journal of coordination chemistry, 1996-02, Vol.37 (1-4), p.63-75</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-6412a294cb8505930790ff701cfead2bbfdcbb72aa5282e50654b17952215bf83</citedby><cites>FETCH-LOGICAL-c296t-6412a294cb8505930790ff701cfead2bbfdcbb72aa5282e50654b17952215bf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00958979608023541$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00958979608023541$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Dyadin, Yu. A.</creatorcontrib><creatorcontrib>Soldatov, D. V.</creatorcontrib><creatorcontrib>Logvinenko, V. A.</creatorcontrib><creatorcontrib>Lipkowski, J.</creatorcontrib><title>CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS</title><title>Journal of coordination chemistry</title><description>Clathrate formation ranges of the phase diagrams of two binary systems Py-Zn(NO 3 ) 2 and Py-Cd(NO 3 ) 2 (Py = pyridine) were studied. A clathrate of composition [MPy 4 (NO 3 ) 2 ]·2Py (M = Zn, Cd) was observed in each of the systems. The space group Ccca (orthorhombic system) and the parameters of the unit cells of both clathrates were determined by X-ray analysis of their single crystals. The data obtained show them to be isostructural with the clathrate [NiPy 4 (NO 3 ) 2 ]·2Py whose structure is known and suggest the actual presence of the host molecules trans-[MPy 4 (NO 3 ) 2 ] (M = Zn,Cd) inside the clathrate phases. Host complexes do not form as separate compounds but can only arise in clathrate phases due to contact stabilization by the guest molecules. Both Zn- and Cd-clathrates are of constant composition and melt incongruently at 62.3(6) and 106.0(5)°C, respectively, yielding the complexes [ZnPy 3 (NO 3 ) 2 ] and [CdPy 3 (NO 3 ) 2 ], these melting congruently at 131.4(5) and 169.5(5)°C, respectively. During thermal decomposition under quasi-equilibrium conditions with different pressures of the liberating pyridine both clathrates also decompose in one stage, giving [MPy 3 (NO 3 ) 2 ] complexes. The results obtained are discussed in relation to a number of other systems with Schaeffer's and Hofmann-lwamoto's clathrates in which contact stabilization occurs or might be expected to occur.</description><subject>clathrate</subject><subject>contact stabilization</subject><subject>metal(II)</subject><subject>phase diagram</subject><subject>pyridine</subject><subject>X-ray</subject><issn>0095-8972</issn><issn>1029-0389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kN1KwzAYhoMoOKcX4FluoJqkTduIJzXt1kB_RpuC20lJuwYm2yrpQHYTXrP7EUHEo4-X93m-gxeAe4weMPLRI0KM-sxj7iEQmzr4AowwIsxCts8uwejYWweAXIObYXhDCNs28Ubgk-eZDLiEpQxeRCIWgRR5BvMJjPNSQp6nsyR6hWmeRLxKohKGVSGyKeRJIOMikBGc5EV6kp6gjCM4mxciFFlkLUTGYSbkCQqy8HfLgzAVVfoDlPNSRml5C660Wg_d3fcdg2oSSR5bST4VPEisljB3Z7kOJoowp218iiizkceQ1h7Cre7UkjSNXrZN4xGlKPFJR5FLnQZ7jBKCaaN9ewzw-W9r-mEwna7fzWqjzL7GqD4OWv8Z9OA8n53VVvdmoz56s17WO7Vf90YbtW1XQ23_r38BxJJwSw</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>Dyadin, Yu. A.</creator><creator>Soldatov, D. V.</creator><creator>Logvinenko, V. A.</creator><creator>Lipkowski, J.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960201</creationdate><title>CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS</title><author>Dyadin, Yu. A. ; Soldatov, D. V. ; Logvinenko, V. A. ; Lipkowski, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-6412a294cb8505930790ff701cfead2bbfdcbb72aa5282e50654b17952215bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>clathrate</topic><topic>contact stabilization</topic><topic>metal(II)</topic><topic>phase diagram</topic><topic>pyridine</topic><topic>X-ray</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyadin, Yu. A.</creatorcontrib><creatorcontrib>Soldatov, D. V.</creatorcontrib><creatorcontrib>Logvinenko, V. A.</creatorcontrib><creatorcontrib>Lipkowski, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of coordination chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyadin, Yu. A.</au><au>Soldatov, D. V.</au><au>Logvinenko, V. A.</au><au>Lipkowski, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS</atitle><jtitle>Journal of coordination chemistry</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>37</volume><issue>1-4</issue><spage>63</spage><epage>75</epage><pages>63-75</pages><issn>0095-8972</issn><eissn>1029-0389</eissn><abstract>Clathrate formation ranges of the phase diagrams of two binary systems Py-Zn(NO 3 ) 2 and Py-Cd(NO 3 ) 2 (Py = pyridine) were studied. A clathrate of composition [MPy 4 (NO 3 ) 2 ]·2Py (M = Zn, Cd) was observed in each of the systems. The space group Ccca (orthorhombic system) and the parameters of the unit cells of both clathrates were determined by X-ray analysis of their single crystals. The data obtained show them to be isostructural with the clathrate [NiPy 4 (NO 3 ) 2 ]·2Py whose structure is known and suggest the actual presence of the host molecules trans-[MPy 4 (NO 3 ) 2 ] (M = Zn,Cd) inside the clathrate phases. Host complexes do not form as separate compounds but can only arise in clathrate phases due to contact stabilization by the guest molecules. Both Zn- and Cd-clathrates are of constant composition and melt incongruently at 62.3(6) and 106.0(5)°C, respectively, yielding the complexes [ZnPy 3 (NO 3 ) 2 ] and [CdPy 3 (NO 3 ) 2 ], these melting congruently at 131.4(5) and 169.5(5)°C, respectively. During thermal decomposition under quasi-equilibrium conditions with different pressures of the liberating pyridine both clathrates also decompose in one stage, giving [MPy 3 (NO 3 ) 2 ] complexes. The results obtained are discussed in relation to a number of other systems with Schaeffer's and Hofmann-lwamoto's clathrates in which contact stabilization occurs or might be expected to occur.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00958979608023541</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-8972
ispartof Journal of coordination chemistry, 1996-02, Vol.37 (1-4), p.63-75
issn 0095-8972
1029-0389
language eng
recordid cdi_crossref_primary_10_1080_00958979608023541
source Taylor & Francis Journals Complete
subjects clathrate
contact stabilization
metal(II)
phase diagram
pyridine
X-ray
title CONTACT STABILIZATION OF HOST COMPLEX MOLECULES DURING CLATHRATE FORMATION: THE PYRIDINE-ZINC NITRATE AND THE PYRIDINE-CADMIUM NITRATE SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CONTACT%20STABILIZATION%20OF%20HOST%20COMPLEX%20MOLECULES%20DURING%20CLATHRATE%20FORMATION:%20THE%20PYRIDINE-ZINC%20NITRATE%20AND%20THE%20PYRIDINE-CADMIUM%20NITRATE%20SYSTEMS&rft.jtitle=Journal%20of%20coordination%20chemistry&rft.au=Dyadin,%20Yu.%20A.&rft.date=1996-02-01&rft.volume=37&rft.issue=1-4&rft.spage=63&rft.epage=75&rft.pages=63-75&rft.issn=0095-8972&rft.eissn=1029-0389&rft_id=info:doi/10.1080/00958979608023541&rft_dat=%3Ccrossref_infor%3E10_1080_00958979608023541%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true