On the deskins completions and theta completions for maximal subgroups

Let G be a finite group and M a maximal subgroup of G. A θ-completion of M in G is any subgroup C such that C is not contained in M while M G , the core of M in G, is contained in C and has no proper normal subgroup of . The concept of θ -completion offers a convenience for us to study the Deskins c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in algebra 2000-01, Vol.28 (1), p.375-385
1. Verfasser: Yaoqing, Zhao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 1
container_start_page 375
container_title Communications in algebra
container_volume 28
creator Yaoqing, Zhao
description Let G be a finite group and M a maximal subgroup of G. A θ-completion of M in G is any subgroup C such that C is not contained in M while M G , the core of M in G, is contained in C and has no proper normal subgroup of . The concept of θ -completion offers a convenience for us to study the Deskins completions. By using this concept and in a quite different way from what was used, we obtain some new results about the maximal completions and θ-completions which imply G to be solvable and supersolvable.
doi_str_mv 10.1080/00927870008841078
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927870008841078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00927870008841078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-9d782267ae674afda7c8fcc846eac03caf8b43d12495e69f45d935e2bbe40aa53</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhRdRsFYfwLu8QHR_sxvwRopVodAbvV4m-6PRJFt2t9i-vQn1Rgp6NcOc-WYOB6Frgm8IVvgW45pKJTHGSnGCpTpBMyIYLTmh4hTNJr0cF-g5ukjpA2MipKIztFwPRX53hXXpsx1SYUK_6Vxuw9jDYCctw6-pD7HoYdf20BVp27zFsN2kS3TmoUvu6qfO0evy4WXxVK7Wj8-L-1VpaK1yWdvxKa0kuEpy8BakUd4YxSsHBjMDXjWcWUJ5LVxVey5szYSjTeM4BhBsjsjhrokhpei83sTRSdxrgvUUhD4KYmTuDkw7jN57-AqxszrDvgvRRxhMmzT7C5f_4keUzrvMvgHFTnc-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the deskins completions and theta completions for maximal subgroups</title><source>Taylor &amp; Francis</source><creator>Yaoqing, Zhao</creator><creatorcontrib>Yaoqing, Zhao</creatorcontrib><description>Let G be a finite group and M a maximal subgroup of G. A θ-completion of M in G is any subgroup C such that C is not contained in M while M G , the core of M in G, is contained in C and has no proper normal subgroup of . The concept of θ -completion offers a convenience for us to study the Deskins completions. By using this concept and in a quite different way from what was used, we obtain some new results about the maximal completions and θ-completions which imply G to be solvable and supersolvable.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927870008841078</identifier><language>eng</language><publisher>Marcel Dekker, Inc</publisher><ispartof>Communications in algebra, 2000-01, Vol.28 (1), p.375-385</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-9d782267ae674afda7c8fcc846eac03caf8b43d12495e69f45d935e2bbe40aa53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00927870008841078$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00927870008841078$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Yaoqing, Zhao</creatorcontrib><title>On the deskins completions and theta completions for maximal subgroups</title><title>Communications in algebra</title><description>Let G be a finite group and M a maximal subgroup of G. A θ-completion of M in G is any subgroup C such that C is not contained in M while M G , the core of M in G, is contained in C and has no proper normal subgroup of . The concept of θ -completion offers a convenience for us to study the Deskins completions. By using this concept and in a quite different way from what was used, we obtain some new results about the maximal completions and θ-completions which imply G to be solvable and supersolvable.</description><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQhRdRsFYfwLu8QHR_sxvwRopVodAbvV4m-6PRJFt2t9i-vQn1Rgp6NcOc-WYOB6Frgm8IVvgW45pKJTHGSnGCpTpBMyIYLTmh4hTNJr0cF-g5ukjpA2MipKIztFwPRX53hXXpsx1SYUK_6Vxuw9jDYCctw6-pD7HoYdf20BVp27zFsN2kS3TmoUvu6qfO0evy4WXxVK7Wj8-L-1VpaK1yWdvxKa0kuEpy8BakUd4YxSsHBjMDXjWcWUJ5LVxVey5szYSjTeM4BhBsjsjhrokhpei83sTRSdxrgvUUhD4KYmTuDkw7jN57-AqxszrDvgvRRxhMmzT7C5f_4keUzrvMvgHFTnc-</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Yaoqing, Zhao</creator><general>Marcel Dekker, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>On the deskins completions and theta completions for maximal subgroups</title><author>Yaoqing, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-9d782267ae674afda7c8fcc846eac03caf8b43d12495e69f45d935e2bbe40aa53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaoqing, Zhao</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaoqing, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the deskins completions and theta completions for maximal subgroups</atitle><jtitle>Communications in algebra</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>28</volume><issue>1</issue><spage>375</spage><epage>385</epage><pages>375-385</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Let G be a finite group and M a maximal subgroup of G. A θ-completion of M in G is any subgroup C such that C is not contained in M while M G , the core of M in G, is contained in C and has no proper normal subgroup of . The concept of θ -completion offers a convenience for us to study the Deskins completions. By using this concept and in a quite different way from what was used, we obtain some new results about the maximal completions and θ-completions which imply G to be solvable and supersolvable.</abstract><pub>Marcel Dekker, Inc</pub><doi>10.1080/00927870008841078</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2000-01, Vol.28 (1), p.375-385
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927870008841078
source Taylor & Francis
title On the deskins completions and theta completions for maximal subgroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20deskins%20completions%20and%20theta%20completions%20for%20maximal%20subgroups&rft.jtitle=Communications%20in%20algebra&rft.au=Yaoqing,%20Zhao&rft.date=2000-01-01&rft.volume=28&rft.issue=1&rft.spage=375&rft.epage=385&rft.pages=375-385&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927870008841078&rft_dat=%3Ccrossref_infor%3E10_1080_00927870008841078%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true