Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling

Advertising research is a scientific discipline that studies artifacts (e.g., various forms of marketing communication) as well as natural phenomena (e.g., consumer behavior). Empirical advertising research therefore requires methods that can model design constructs as well as behavioral constructs,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advertising 2017-01, Vol.46 (1), p.178-192
1. Verfasser: Henseler, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 178
container_title Journal of advertising
container_volume 46
creator Henseler, Jörg
description Advertising research is a scientific discipline that studies artifacts (e.g., various forms of marketing communication) as well as natural phenomena (e.g., consumer behavior). Empirical advertising research therefore requires methods that can model design constructs as well as behavioral constructs, which typically require different measurement models. This article presents variance-based structural equation modeling (SEM) as a family of techniques that can handle different types of measurement models: composites, common factors, and causal-formative measurement. It explains the differences between these types of measurement models and clears up possible ambiguity regarding formative endogenous constructs. The article proposes confirmatory composite analysis to assess the nomological validity of composites, confirmatory factor analysis (CFA) and the heterotrait-monotrait ratio of correlations (HTMT) to assess the construct validity of common factors, and the multiple indicator, multiple causes (MIMIC) model to assess the external validity of causal-formative measurement.
doi_str_mv 10.1080/00913367.2017.1281780
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00913367_2017_1281780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26157271</jstor_id><sourcerecordid>26157271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-a50a88200963a7c32d99cfcde3628bd63a00a44fe337d6d26ef228b2d7aef5973</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5CZUiceGS4qWOnRuUXQIhsd-swXZaV2lM7QTEv8dRCwcOzMUjz_fejB5CQ4JHBEt8hHFJGCvEiGIiRoRKIiTeQAPCuchTyzfRoGfyHtpGOzHOcSpekgF6nQRnpq6ZZmc2ummTQWOyiZ3Bh_MB6uzeRgtBz7IX186yZwgOGm3zCURrsoc2dLrteu582UHrfJPdemPr5LeHtiqoo91fv7vo6eL88fQqv7m7vD49ucn1WJA2B45BSprOKxgIzagpS11pY1lB5ZtJnxjDeFxZxoQpDC1sRdOAGgG24qVgu-hw5fse_LKzsVULF7Wta2is76IiUo5784Ik9OAPOvddaNJ1iRJC0pKzIlF8RengYwy2Uu_BLSB8KYJVn7f6yVv1eat13kk3XOnmsfXhV0QLwgUV_fbj1dw1lQ8L-PShNqqFr9qHKqRUXVTs_xXfa7iPyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877829536</pqid></control><display><type>article</type><title>Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling</title><source>Business Source Complete</source><source>JSTOR</source><creator>Henseler, Jörg</creator><creatorcontrib>Henseler, Jörg</creatorcontrib><description>Advertising research is a scientific discipline that studies artifacts (e.g., various forms of marketing communication) as well as natural phenomena (e.g., consumer behavior). Empirical advertising research therefore requires methods that can model design constructs as well as behavioral constructs, which typically require different measurement models. This article presents variance-based structural equation modeling (SEM) as a family of techniques that can handle different types of measurement models: composites, common factors, and causal-formative measurement. It explains the differences between these types of measurement models and clears up possible ambiguity regarding formative endogenous constructs. The article proposes confirmatory composite analysis to assess the nomological validity of composites, confirmatory factor analysis (CFA) and the heterotrait-monotrait ratio of correlations (HTMT) to assess the construct validity of common factors, and the multiple indicator, multiple causes (MIMIC) model to assess the external validity of causal-formative measurement.</description><identifier>ISSN: 0091-3367</identifier><identifier>EISSN: 1557-7805</identifier><identifier>DOI: 10.1080/00913367.2017.1281780</identifier><identifier>CODEN: JOADD7</identifier><language>eng</language><publisher>Abingdon: Routledge</publisher><subject>Advertising ; Measurement ; Quantitative Research ; Research methodology ; Structural equation modeling ; Validity</subject><ispartof>Journal of advertising, 2017-01, Vol.46 (1), p.178-192</ispartof><rights>2017 The Author(s). Published with license by Taylor &amp; Francis © Jörg Henseler 2017</rights><rights>Copyright © 2017 American Academy of Advertising</rights><rights>2017 The Author(s). Published with license by Taylor &amp; Francis; © Jörg Henseler</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-a50a88200963a7c32d99cfcde3628bd63a00a44fe337d6d26ef228b2d7aef5973</citedby><cites>FETCH-LOGICAL-c471t-a50a88200963a7c32d99cfcde3628bd63a00a44fe337d6d26ef228b2d7aef5973</cites><orcidid>0000-0002-9736-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26157271$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26157271$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Henseler, Jörg</creatorcontrib><title>Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling</title><title>Journal of advertising</title><description>Advertising research is a scientific discipline that studies artifacts (e.g., various forms of marketing communication) as well as natural phenomena (e.g., consumer behavior). Empirical advertising research therefore requires methods that can model design constructs as well as behavioral constructs, which typically require different measurement models. This article presents variance-based structural equation modeling (SEM) as a family of techniques that can handle different types of measurement models: composites, common factors, and causal-formative measurement. It explains the differences between these types of measurement models and clears up possible ambiguity regarding formative endogenous constructs. The article proposes confirmatory composite analysis to assess the nomological validity of composites, confirmatory factor analysis (CFA) and the heterotrait-monotrait ratio of correlations (HTMT) to assess the construct validity of common factors, and the multiple indicator, multiple causes (MIMIC) model to assess the external validity of causal-formative measurement.</description><subject>Advertising</subject><subject>Measurement</subject><subject>Quantitative Research</subject><subject>Research methodology</subject><subject>Structural equation modeling</subject><subject>Validity</subject><issn>0091-3367</issn><issn>1557-7805</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kElPwzAQhS0EEmX5CZUiceGS4qWOnRuUXQIhsd-swXZaV2lM7QTEv8dRCwcOzMUjz_fejB5CQ4JHBEt8hHFJGCvEiGIiRoRKIiTeQAPCuchTyzfRoGfyHtpGOzHOcSpekgF6nQRnpq6ZZmc2ummTQWOyiZ3Bh_MB6uzeRgtBz7IX186yZwgOGm3zCURrsoc2dLrteu582UHrfJPdemPr5LeHtiqoo91fv7vo6eL88fQqv7m7vD49ucn1WJA2B45BSprOKxgIzagpS11pY1lB5ZtJnxjDeFxZxoQpDC1sRdOAGgG24qVgu-hw5fse_LKzsVULF7Wta2is76IiUo5784Ik9OAPOvddaNJ1iRJC0pKzIlF8RengYwy2Uu_BLSB8KYJVn7f6yVv1eat13kk3XOnmsfXhV0QLwgUV_fbj1dw1lQ8L-PShNqqFr9qHKqRUXVTs_xXfa7iPyg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Henseler, Jörg</creator><general>Routledge</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-9736-3048</orcidid></search><sort><creationdate>20170101</creationdate><title>Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling</title><author>Henseler, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-a50a88200963a7c32d99cfcde3628bd63a00a44fe337d6d26ef228b2d7aef5973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advertising</topic><topic>Measurement</topic><topic>Quantitative Research</topic><topic>Research methodology</topic><topic>Structural equation modeling</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henseler, Jörg</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of advertising</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henseler, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling</atitle><jtitle>Journal of advertising</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>46</volume><issue>1</issue><spage>178</spage><epage>192</epage><pages>178-192</pages><issn>0091-3367</issn><eissn>1557-7805</eissn><coden>JOADD7</coden><abstract>Advertising research is a scientific discipline that studies artifacts (e.g., various forms of marketing communication) as well as natural phenomena (e.g., consumer behavior). Empirical advertising research therefore requires methods that can model design constructs as well as behavioral constructs, which typically require different measurement models. This article presents variance-based structural equation modeling (SEM) as a family of techniques that can handle different types of measurement models: composites, common factors, and causal-formative measurement. It explains the differences between these types of measurement models and clears up possible ambiguity regarding formative endogenous constructs. The article proposes confirmatory composite analysis to assess the nomological validity of composites, confirmatory factor analysis (CFA) and the heterotrait-monotrait ratio of correlations (HTMT) to assess the construct validity of common factors, and the multiple indicator, multiple causes (MIMIC) model to assess the external validity of causal-formative measurement.</abstract><cop>Abingdon</cop><pub>Routledge</pub><doi>10.1080/00913367.2017.1281780</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9736-3048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-3367
ispartof Journal of advertising, 2017-01, Vol.46 (1), p.178-192
issn 0091-3367
1557-7805
language eng
recordid cdi_crossref_primary_10_1080_00913367_2017_1281780
source Business Source Complete; JSTOR
subjects Advertising
Measurement
Quantitative Research
Research methodology
Structural equation modeling
Validity
title Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20Design%20and%20Behavioral%20Research%20With%20Variance-Based%20Structural%20Equation%20Modeling&rft.jtitle=Journal%20of%20advertising&rft.au=Henseler,%20J%C3%B6rg&rft.date=2017-01-01&rft.volume=46&rft.issue=1&rft.spage=178&rft.epage=192&rft.pages=178-192&rft.issn=0091-3367&rft.eissn=1557-7805&rft.coden=JOADD7&rft_id=info:doi/10.1080/00913367.2017.1281780&rft_dat=%3Cjstor_cross%3E26157271%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877829536&rft_id=info:pmid/&rft_jstor_id=26157271&rfr_iscdi=true