A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles

This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vehicle system dynamics 2014-06, Vol.52 (6), p.802-823
Hauptverfasser: Gao, Yiqi, Gray, Andrew, Tseng, H. Eric, Borrelli, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 6
container_start_page 802
container_title Vehicle system dynamics
container_volume 52
creator Gao, Yiqi
Gray, Andrew
Tseng, H. Eric
Borrelli, Francesco
description This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.
doi_str_mv 10.1080/00423114.2014.902537
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00423114_2014_902537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551078219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-bf00019efee075e2b23d8d938fae0cd08d81ae40f64ad3a764d7fa03b78141a3</originalsourceid><addsrcrecordid>eNp9kDFP5DAQha0TSCxw_4DCJU24cexskgqtVhwgrURDR2FN7PHhU2IvtgPi319Wy7U0M833np4-xq4E3Ajo4BeAqqUQ6qaG5fRQN7L9wVaiVapqRNOfsNUBqQ7MGTvP-S8ASOjaFXvZ8DIPVA2YyfIUhzkXHmIYfSBMfJ_IelP8O3ETQ0lx5Ljfp4jmlZfIM00e5xJDnOKc-Z8U52D5O716M1K-ZKcOx0w_v_4Fe_5997x9qHZP94_bza4yCtalGtyyRvTkiKBtqB5qaTvby84hgbHQ2U4gKXBrhVZiu1a2dQhyaDuhBMoLdn2sXXa9zZSLnnw2NI4YaFmlRdMIaLta9AuqjqhJMedETu-TnzB9agH6oFL_V6kPKvVR5RK7PcZ8cDFN-BHTaHXBzzEmlzAYn7X8tuEfeE58UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551078219</pqid></control><display><type>article</type><title>A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles</title><source>Taylor &amp; Francis Journals Complete</source><creator>Gao, Yiqi ; Gray, Andrew ; Tseng, H. Eric ; Borrelli, Francesco</creator><creatorcontrib>Gao, Yiqi ; Gray, Andrew ; Tseng, H. Eric ; Borrelli, Francesco</creatorcontrib><description>This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.</description><identifier>ISSN: 0042-3114</identifier><identifier>EISSN: 1744-5159</identifier><identifier>DOI: 10.1080/00423114.2014.902537</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>active safety ; autonomous vehicles ; Computer simulation ; Design engineering ; Grounds ; Invariants ; Mathematical models ; Nonlinearity ; Obstacles ; robust control ; robust nonlinear MPC ; uncertain dynamics ; vehicle safety ; Vehicles</subject><ispartof>Vehicle system dynamics, 2014-06, Vol.52 (6), p.802-823</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-bf00019efee075e2b23d8d938fae0cd08d81ae40f64ad3a764d7fa03b78141a3</citedby><cites>FETCH-LOGICAL-c406t-bf00019efee075e2b23d8d938fae0cd08d81ae40f64ad3a764d7fa03b78141a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00423114.2014.902537$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00423114.2014.902537$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Gao, Yiqi</creatorcontrib><creatorcontrib>Gray, Andrew</creatorcontrib><creatorcontrib>Tseng, H. Eric</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><title>A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles</title><title>Vehicle system dynamics</title><description>This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.</description><subject>active safety</subject><subject>autonomous vehicles</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Grounds</subject><subject>Invariants</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Obstacles</subject><subject>robust control</subject><subject>robust nonlinear MPC</subject><subject>uncertain dynamics</subject><subject>vehicle safety</subject><subject>Vehicles</subject><issn>0042-3114</issn><issn>1744-5159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFP5DAQha0TSCxw_4DCJU24cexskgqtVhwgrURDR2FN7PHhU2IvtgPi319Wy7U0M833np4-xq4E3Ajo4BeAqqUQ6qaG5fRQN7L9wVaiVapqRNOfsNUBqQ7MGTvP-S8ASOjaFXvZ8DIPVA2YyfIUhzkXHmIYfSBMfJ_IelP8O3ETQ0lx5Ljfp4jmlZfIM00e5xJDnOKc-Z8U52D5O716M1K-ZKcOx0w_v_4Fe_5997x9qHZP94_bza4yCtalGtyyRvTkiKBtqB5qaTvby84hgbHQ2U4gKXBrhVZiu1a2dQhyaDuhBMoLdn2sXXa9zZSLnnw2NI4YaFmlRdMIaLta9AuqjqhJMedETu-TnzB9agH6oFL_V6kPKvVR5RK7PcZ8cDFN-BHTaHXBzzEmlzAYn7X8tuEfeE58UQ</recordid><startdate>20140603</startdate><enddate>20140603</enddate><creator>Gao, Yiqi</creator><creator>Gray, Andrew</creator><creator>Tseng, H. Eric</creator><creator>Borrelli, Francesco</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20140603</creationdate><title>A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles</title><author>Gao, Yiqi ; Gray, Andrew ; Tseng, H. Eric ; Borrelli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-bf00019efee075e2b23d8d938fae0cd08d81ae40f64ad3a764d7fa03b78141a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>active safety</topic><topic>autonomous vehicles</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Grounds</topic><topic>Invariants</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Obstacles</topic><topic>robust control</topic><topic>robust nonlinear MPC</topic><topic>uncertain dynamics</topic><topic>vehicle safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yiqi</creatorcontrib><creatorcontrib>Gray, Andrew</creatorcontrib><creatorcontrib>Tseng, H. Eric</creatorcontrib><creatorcontrib>Borrelli, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Vehicle system dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yiqi</au><au>Gray, Andrew</au><au>Tseng, H. Eric</au><au>Borrelli, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles</atitle><jtitle>Vehicle system dynamics</jtitle><date>2014-06-03</date><risdate>2014</risdate><volume>52</volume><issue>6</issue><spage>802</spage><epage>823</epage><pages>802-823</pages><issn>0042-3114</issn><eissn>1744-5159</eissn><abstract>This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/00423114.2014.902537</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0042-3114
ispartof Vehicle system dynamics, 2014-06, Vol.52 (6), p.802-823
issn 0042-3114
1744-5159
language eng
recordid cdi_crossref_primary_10_1080_00423114_2014_902537
source Taylor & Francis Journals Complete
subjects active safety
autonomous vehicles
Computer simulation
Design engineering
Grounds
Invariants
Mathematical models
Nonlinearity
Obstacles
robust control
robust nonlinear MPC
uncertain dynamics
vehicle safety
Vehicles
title A tube-based robust nonlinear predictive control approach to semiautonomous ground vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tube-based%20robust%20nonlinear%20predictive%20control%20approach%20to%20semiautonomous%20ground%20vehicles&rft.jtitle=Vehicle%20system%20dynamics&rft.au=Gao,%20Yiqi&rft.date=2014-06-03&rft.volume=52&rft.issue=6&rft.spage=802&rft.epage=823&rft.pages=802-823&rft.issn=0042-3114&rft.eissn=1744-5159&rft_id=info:doi/10.1080/00423114.2014.902537&rft_dat=%3Cproquest_cross%3E1551078219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551078219&rft_id=info:pmid/&rfr_iscdi=true