The Distribution of the Maximum Sum of Rank
In this paper a c-sample slippage analogue of the Wilcoxon [11] test is considered. Given a sample of size n for each of c populations, the test rejects the hypothesis that the c populations are identical when max 1≤i≤c σ k r ik > λ, where r i1 , ..., r in are the ranks of the observations from t...
Gespeichert in:
Veröffentlicht in: | Technometrics 1967-05, Vol.9 (2), p.271-278 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Technometrics |
container_volume | 9 |
creator | Odeh, Robert E. |
description | In this paper a c-sample slippage analogue of the Wilcoxon [11] test is considered. Given a sample of size n for each of c populations, the test rejects the hypothesis that the c populations are identical when max
1≤i≤c
σ
k
r
ik
> λ, where r
i1
, ..., r
in
are the ranks of the observations from the i-th population in the combined sample of size cn. The small and large sample distributions of the test statistic are derived. Tables of the exact distribution are given for c = 2(1)5, n = 2(1)5. Tables of critical values are given for c = 2(1)6, n = 2(1)8 for values of α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, and 0.20. |
doi_str_mv | 10.1080/00401706.1967.10490461 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00401706_1967_10490461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00401706_1967_10490461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-ed889adaf72f26482932e25adc5aff1adf6230eaa2d89250389fe115828f03b93</originalsourceid><addsrcrecordid>eNqFj11LwzAUhoMoWKd_QXovnSdJ0ySXY37CRNB5Hc7aBKNtI0mH7t_bMnftxeHAw_u-8BBySWFOQcE1QAlUQjWnupIjKjWUFT0iGRVcFkwyfkyyKVRMqVNyltIHAOVMyYxcrd9tfuPTEP1mO_jQ58Hlw8ie8Md32y5_HW9EL9h_npMTh22yF39_Rt7ubtfLh2L1fP-4XKyKmkoxFLZRSmODTjLHqlIxzZllAptaoHMUG1cxDhaRNUozAVxpZykViikHfKP5jFT73TqGlKJ15iv6DuPOUDCTsjkom0nZHJTH4mJf9L0LscPvENvGDLhrQ3QR-9onw__Z-AXmxlw3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Distribution of the Maximum Sum of Rank</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Odeh, Robert E.</creator><creatorcontrib>Odeh, Robert E.</creatorcontrib><description>In this paper a c-sample slippage analogue of the Wilcoxon [11] test is considered. Given a sample of size n for each of c populations, the test rejects the hypothesis that the c populations are identical when max
1≤i≤c
σ
k
r
ik
> λ, where r
i1
, ..., r
in
are the ranks of the observations from the i-th population in the combined sample of size cn. The small and large sample distributions of the test statistic are derived. Tables of the exact distribution are given for c = 2(1)5, n = 2(1)5. Tables of critical values are given for c = 2(1)6, n = 2(1)8 for values of α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, and 0.20.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1967.10490461</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><ispartof>Technometrics, 1967-05, Vol.9 (2), p.271-278</ispartof><rights>Copyright Taylor & Francis Group, LLC 1967</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-ed889adaf72f26482932e25adc5aff1adf6230eaa2d89250389fe115828f03b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Odeh, Robert E.</creatorcontrib><title>The Distribution of the Maximum Sum of Rank</title><title>Technometrics</title><description>In this paper a c-sample slippage analogue of the Wilcoxon [11] test is considered. Given a sample of size n for each of c populations, the test rejects the hypothesis that the c populations are identical when max
1≤i≤c
σ
k
r
ik
> λ, where r
i1
, ..., r
in
are the ranks of the observations from the i-th population in the combined sample of size cn. The small and large sample distributions of the test statistic are derived. Tables of the exact distribution are given for c = 2(1)5, n = 2(1)5. Tables of critical values are given for c = 2(1)6, n = 2(1)8 for values of α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, and 0.20.</description><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><recordid>eNqFj11LwzAUhoMoWKd_QXovnSdJ0ySXY37CRNB5Hc7aBKNtI0mH7t_bMnftxeHAw_u-8BBySWFOQcE1QAlUQjWnupIjKjWUFT0iGRVcFkwyfkyyKVRMqVNyltIHAOVMyYxcrd9tfuPTEP1mO_jQ58Hlw8ie8Md32y5_HW9EL9h_npMTh22yF39_Rt7ubtfLh2L1fP-4XKyKmkoxFLZRSmODTjLHqlIxzZllAptaoHMUG1cxDhaRNUozAVxpZykViikHfKP5jFT73TqGlKJ15iv6DuPOUDCTsjkom0nZHJTH4mJf9L0LscPvENvGDLhrQ3QR-9onw__Z-AXmxlw3</recordid><startdate>19670501</startdate><enddate>19670501</enddate><creator>Odeh, Robert E.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19670501</creationdate><title>The Distribution of the Maximum Sum of Rank</title><author>Odeh, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-ed889adaf72f26482932e25adc5aff1adf6230eaa2d89250389fe115828f03b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odeh, Robert E.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odeh, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Distribution of the Maximum Sum of Rank</atitle><jtitle>Technometrics</jtitle><date>1967-05-01</date><risdate>1967</risdate><volume>9</volume><issue>2</issue><spage>271</spage><epage>278</epage><pages>271-278</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>In this paper a c-sample slippage analogue of the Wilcoxon [11] test is considered. Given a sample of size n for each of c populations, the test rejects the hypothesis that the c populations are identical when max
1≤i≤c
σ
k
r
ik
> λ, where r
i1
, ..., r
in
are the ranks of the observations from the i-th population in the combined sample of size cn. The small and large sample distributions of the test statistic are derived. Tables of the exact distribution are given for c = 2(1)5, n = 2(1)5. Tables of critical values are given for c = 2(1)6, n = 2(1)8 for values of α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.10, and 0.20.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.1967.10490461</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 1967-05, Vol.9 (2), p.271-278 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00401706_1967_10490461 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
title | The Distribution of the Maximum Sum of Rank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Distribution%20of%20the%20Maximum%20Sum%20of%20Rank&rft.jtitle=Technometrics&rft.au=Odeh,%20Robert%20E.&rft.date=1967-05-01&rft.volume=9&rft.issue=2&rft.spage=271&rft.epage=278&rft.pages=271-278&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.1967.10490461&rft_dat=%3Ccrossref_infor%3E10_1080_00401706_1967_10490461%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |