Amendment of drilling fluid-affected soils with calcium salts
Land disposal of waste drilling fluid is an environmental concern because of the high salt content and the presence of potential toxic elements. A water-based drilling fluid was tested in a laboratory column study to determine the feasibility of leaching excessive salt without mobilizing chromium (C...
Gespeichert in:
Veröffentlicht in: | Soil science and plant nutrition (Tokyo) 2002-06, Vol.48 (3), p.325-331 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Land disposal of waste drilling fluid is an environmental concern because of the high salt content and the presence of potential toxic elements. A water-based drilling fluid was tested in a laboratory column study to determine the feasibility of leaching excessive salt without mobilizing chromium (Cr). The drilling fluid-affected two Alfisols with similar mineralogy, acidity, and texture were treated with gypsum (CaSO4 ¥ 2H2O), calcium carbonate (CaCO3), or calcium phosphate (CaHPO4) (0 to 2% of weight). The electrical conductivity (EC) increased and the sodium adsorption ratio (SAR) decreased with increasing Ca-salt concentration. The pH did not vary significantly with the changes in the concentrations of gypsum and calcium phosphate. The pH of the mixtures increased in proportion to the concentration of added calcium carbonate. The hydraulic conductivity increased and the mobility of the soil particles decreased with increasing Ca-salt concentration. The Cr mobility decreased by gypsum and CaCO3 treatments but it increased by calcium phosphate treatment. The soil with a higher content of organic matter and cation exchange capacity (CEC) showed a higher hydraulic conductivity and lower Cr mobility than the other soils at the same levels of the treatment. The results of this study suggest that the amendment of drilling fluid-affected soils with CaCO3 and gypsum can enhance the leaching of excessive salt and reduce the Cr mobility. Among loamy soil, those with a higher CEC and organic matter content are more suitable for land disposal of drilling fluid. |
---|---|
ISSN: | 0038-0768 1747-0765 |
DOI: | 10.1080/00380768.2002.10409208 |