A variational approach to the statistical mechanics of hard discs and hard spheres

The theory of complementary variational principles is used to obtain analytic approximations to hard disc and hard sphere pair correlation functions in the high density regime. We study the Yvon-Born-Green non-linear integral equation (under the superposition closure) and draw upon earlier theoretic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular physics 1981-09, Vol.44 (1), p.17-31
Hauptverfasser: MacCarthy, John E., Kozak, John J., Green, K.A., Luks, K.D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 17
container_title Molecular physics
container_volume 44
creator MacCarthy, John E.
Kozak, John J.
Green, K.A.
Luks, K.D.
description The theory of complementary variational principles is used to obtain analytic approximations to hard disc and hard sphere pair correlation functions in the high density regime. We study the Yvon-Born-Green non-linear integral equation (under the superposition closure) and draw upon earlier theoretical studies of this equation, particularly those which deal with the short range and asymptotic form of the YBG pair correlation function in d-dimensions, to motivate possible choices of the variational trial functions. These functions are optimized in accordance with extremum principles of the theory and the results are compared with existing numerical solutions of the YBG equation for hard discs and hard spheres. It is found that the analytic functions determined via the method of complementary variational principles are in excellent accord with the numerical data, even to the extent of indicating the onset of a fluid-periodic transition in the (very) high density regime. The relevance of this work to the problem of stability in hard disc and hard sphere systems is stressed in the concluding section of the paper.
doi_str_mv 10.1080/00268978100102261
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00268978100102261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00268978100102261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-a16ad62c180c5f4d4e52fc65f5e4149dd7d95b39357439eed6c006e172f369333</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLu8QPUmadMG3AyDfzAgiK7LNT800mlKEpR5ezPUnbi6HL5zDpdDyDWDGwYd3AJw2am2YwAMOJfshKyYkLwSwLtTsjryqhjkOblI6RMAZDGuyOuGfmH0mH2YcKQ4zzGgHmgONA-WplxIyl4Xtrd6wMnrRIOjA0ZDjU9F4WQWmebBRpsuyZnDMdmr37sm7w_3b9unavfy-Lzd7CrNVZcrZBKN5Jp1oBtXm9o23GnZuMbWrFbGtEY1H0KJpq2FstZIXZ62rOVOSCWEWBO29OoYUorW9XP0e4yHnkF_HKX_M0rJ3C0ZP7kQ9_gd4mj6jIcxRBdx0j714v_4DxGBZwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A variational approach to the statistical mechanics of hard discs and hard spheres</title><source>Taylor &amp; Francis Journals Complete</source><creator>MacCarthy, John E. ; Kozak, John J. ; Green, K.A. ; Luks, K.D.</creator><creatorcontrib>MacCarthy, John E. ; Kozak, John J. ; Green, K.A. ; Luks, K.D.</creatorcontrib><description>The theory of complementary variational principles is used to obtain analytic approximations to hard disc and hard sphere pair correlation functions in the high density regime. We study the Yvon-Born-Green non-linear integral equation (under the superposition closure) and draw upon earlier theoretical studies of this equation, particularly those which deal with the short range and asymptotic form of the YBG pair correlation function in d-dimensions, to motivate possible choices of the variational trial functions. These functions are optimized in accordance with extremum principles of the theory and the results are compared with existing numerical solutions of the YBG equation for hard discs and hard spheres. It is found that the analytic functions determined via the method of complementary variational principles are in excellent accord with the numerical data, even to the extent of indicating the onset of a fluid-periodic transition in the (very) high density regime. The relevance of this work to the problem of stability in hard disc and hard sphere systems is stressed in the concluding section of the paper.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268978100102261</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>Molecular physics, 1981-09, Vol.44 (1), p.17-31</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-a16ad62c180c5f4d4e52fc65f5e4149dd7d95b39357439eed6c006e172f369333</citedby><cites>FETCH-LOGICAL-c298t-a16ad62c180c5f4d4e52fc65f5e4149dd7d95b39357439eed6c006e172f369333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00268978100102261$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00268978100102261$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59622,60411</link.rule.ids></links><search><creatorcontrib>MacCarthy, John E.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Green, K.A.</creatorcontrib><creatorcontrib>Luks, K.D.</creatorcontrib><title>A variational approach to the statistical mechanics of hard discs and hard spheres</title><title>Molecular physics</title><description>The theory of complementary variational principles is used to obtain analytic approximations to hard disc and hard sphere pair correlation functions in the high density regime. We study the Yvon-Born-Green non-linear integral equation (under the superposition closure) and draw upon earlier theoretical studies of this equation, particularly those which deal with the short range and asymptotic form of the YBG pair correlation function in d-dimensions, to motivate possible choices of the variational trial functions. These functions are optimized in accordance with extremum principles of the theory and the results are compared with existing numerical solutions of the YBG equation for hard discs and hard spheres. It is found that the analytic functions determined via the method of complementary variational principles are in excellent accord with the numerical data, even to the extent of indicating the onset of a fluid-periodic transition in the (very) high density regime. The relevance of this work to the problem of stability in hard disc and hard sphere systems is stressed in the concluding section of the paper.</description><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI4-gLu8QPUmadMG3AyDfzAgiK7LNT800mlKEpR5ezPUnbi6HL5zDpdDyDWDGwYd3AJw2am2YwAMOJfshKyYkLwSwLtTsjryqhjkOblI6RMAZDGuyOuGfmH0mH2YcKQ4zzGgHmgONA-WplxIyl4Xtrd6wMnrRIOjA0ZDjU9F4WQWmebBRpsuyZnDMdmr37sm7w_3b9unavfy-Lzd7CrNVZcrZBKN5Jp1oBtXm9o23GnZuMbWrFbGtEY1H0KJpq2FstZIXZ62rOVOSCWEWBO29OoYUorW9XP0e4yHnkF_HKX_M0rJ3C0ZP7kQ9_gd4mj6jIcxRBdx0j714v_4DxGBZwU</recordid><startdate>19810901</startdate><enddate>19810901</enddate><creator>MacCarthy, John E.</creator><creator>Kozak, John J.</creator><creator>Green, K.A.</creator><creator>Luks, K.D.</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19810901</creationdate><title>A variational approach to the statistical mechanics of hard discs and hard spheres</title><author>MacCarthy, John E. ; Kozak, John J. ; Green, K.A. ; Luks, K.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-a16ad62c180c5f4d4e52fc65f5e4149dd7d95b39357439eed6c006e172f369333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacCarthy, John E.</creatorcontrib><creatorcontrib>Kozak, John J.</creatorcontrib><creatorcontrib>Green, K.A.</creatorcontrib><creatorcontrib>Luks, K.D.</creatorcontrib><collection>CrossRef</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacCarthy, John E.</au><au>Kozak, John J.</au><au>Green, K.A.</au><au>Luks, K.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational approach to the statistical mechanics of hard discs and hard spheres</atitle><jtitle>Molecular physics</jtitle><date>1981-09-01</date><risdate>1981</risdate><volume>44</volume><issue>1</issue><spage>17</spage><epage>31</epage><pages>17-31</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>The theory of complementary variational principles is used to obtain analytic approximations to hard disc and hard sphere pair correlation functions in the high density regime. We study the Yvon-Born-Green non-linear integral equation (under the superposition closure) and draw upon earlier theoretical studies of this equation, particularly those which deal with the short range and asymptotic form of the YBG pair correlation function in d-dimensions, to motivate possible choices of the variational trial functions. These functions are optimized in accordance with extremum principles of the theory and the results are compared with existing numerical solutions of the YBG equation for hard discs and hard spheres. It is found that the analytic functions determined via the method of complementary variational principles are in excellent accord with the numerical data, even to the extent of indicating the onset of a fluid-periodic transition in the (very) high density regime. The relevance of this work to the problem of stability in hard disc and hard sphere systems is stressed in the concluding section of the paper.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00268978100102261</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-8976
ispartof Molecular physics, 1981-09, Vol.44 (1), p.17-31
issn 0026-8976
1362-3028
language eng
recordid cdi_crossref_primary_10_1080_00268978100102261
source Taylor & Francis Journals Complete
title A variational approach to the statistical mechanics of hard discs and hard spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20approach%20to%20the%20statistical%20mechanics%20of%20hard%20discs%20and%20hard%20spheres&rft.jtitle=Molecular%20physics&rft.au=MacCarthy,%20John%20E.&rft.date=1981-09-01&rft.volume=44&rft.issue=1&rft.spage=17&rft.epage=31&rft.pages=17-31&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268978100102261&rft_dat=%3Ccrossref_infor%3E10_1080_00268978100102261%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true