1D morphodynamic modelling using a simplified grain size description

This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic research 2018-03, Vol.56 (2), p.168-180
Hauptverfasser: Camenen, Benoît, Béraud, Claire, Le Coz, Jérôme, Paquier, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2
container_start_page 168
container_title Journal of hydraulic research
container_volume 56
creator Camenen, Benoît
Béraud, Claire
Le Coz, Jérôme
Paquier, André
description This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length , classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths ( , ). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.
doi_str_mv 10.1080/00221686.2017.1312575
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00221686_2017_1312575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016563885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhw5WJqkpm8dpb6qFBwo-uQZpI2ZWYyJlOl_nozTHXp5l7u4TuHywHgGsEZghzeQYgxopzOMERshgqECSMnYII4KnMMmTgFk4HJB-gcXMS4Syelgk7AA3rIGh-6ra8OrWqcTldl6tq1m2wfh6my6JqudtaZKtsE5dokfJusMlEH1_XOt5fgzKo6mqvjnoL3p8e3xTJfvT6_LOarXJdI9Dlma1xaqCsiUKHWukJQcQGLkgkCLeZMG15RLQhTVgmjFbcKMqJtgRmlJS2m4HbM3apadsE1KhykV04u5ys5aBCJkhSl-ESJvRnZLviPvYm93Pl9aNN7MtVECS04J4kiI6WDjzEY-xeLoBzKlb_lDi4mj-Um3_3oc631oVFfPtSV7NWh9sEG1WoXZfF_xA-9y38b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016563885</pqid></control><display><type>article</type><title>1D morphodynamic modelling using a simplified grain size description</title><source>Taylor &amp; Francis Journals Complete</source><creator>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</creator><creatorcontrib>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</creatorcontrib><description>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length , classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths ( , ). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</description><identifier>ISSN: 0022-1686</identifier><identifier>EISSN: 1814-2079</identifier><identifier>DOI: 10.1080/00221686.2017.1312575</identifier><language>eng</language><publisher>Madrid: Taylor &amp; Francis</publisher><subject>1D numerical model ; Accretion ; Adaptation ; Aggradation ; Computer simulation ; downstream fining ; Environmental Sciences ; Grain size ; Grain size distribution ; Gravel ; Mathematical models ; median grain size ; Modelling ; Particle size ; Sediment ; Sediment aggradation ; Sediment sorting ; Sediment transport ; Sediments ; Size distribution ; sorting coefficient</subject><ispartof>Journal of hydraulic research, 2018-03, Vol.56 (2), p.168-180</ispartof><rights>2017 International Association for Hydro-Environment Engineering and Research 2017</rights><rights>2017 International Association for Hydro-Environment Engineering and Research</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</citedby><cites>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</cites><orcidid>0000-0003-1243-6955 ; 0000-0002-5851-2442 ; 0000-0003-1677-5225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00221686.2017.1312575$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00221686.2017.1312575$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01945349$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Camenen, Benoît</creatorcontrib><creatorcontrib>Béraud, Claire</creatorcontrib><creatorcontrib>Le Coz, Jérôme</creatorcontrib><creatorcontrib>Paquier, André</creatorcontrib><title>1D morphodynamic modelling using a simplified grain size description</title><title>Journal of hydraulic research</title><description>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length , classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths ( , ). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</description><subject>1D numerical model</subject><subject>Accretion</subject><subject>Adaptation</subject><subject>Aggradation</subject><subject>Computer simulation</subject><subject>downstream fining</subject><subject>Environmental Sciences</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Gravel</subject><subject>Mathematical models</subject><subject>median grain size</subject><subject>Modelling</subject><subject>Particle size</subject><subject>Sediment</subject><subject>Sediment aggradation</subject><subject>Sediment sorting</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Size distribution</subject><subject>sorting coefficient</subject><issn>0022-1686</issn><issn>1814-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhw5WJqkpm8dpb6qFBwo-uQZpI2ZWYyJlOl_nozTHXp5l7u4TuHywHgGsEZghzeQYgxopzOMERshgqECSMnYII4KnMMmTgFk4HJB-gcXMS4Syelgk7AA3rIGh-6ra8OrWqcTldl6tq1m2wfh6my6JqudtaZKtsE5dokfJusMlEH1_XOt5fgzKo6mqvjnoL3p8e3xTJfvT6_LOarXJdI9Dlma1xaqCsiUKHWukJQcQGLkgkCLeZMG15RLQhTVgmjFbcKMqJtgRmlJS2m4HbM3apadsE1KhykV04u5ys5aBCJkhSl-ESJvRnZLviPvYm93Pl9aNN7MtVECS04J4kiI6WDjzEY-xeLoBzKlb_lDi4mj-Um3_3oc631oVFfPtSV7NWh9sEG1WoXZfF_xA-9y38b</recordid><startdate>20180304</startdate><enddate>20180304</enddate><creator>Camenen, Benoît</creator><creator>Béraud, Claire</creator><creator>Le Coz, Jérôme</creator><creator>Paquier, André</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1243-6955</orcidid><orcidid>https://orcid.org/0000-0002-5851-2442</orcidid><orcidid>https://orcid.org/0000-0003-1677-5225</orcidid></search><sort><creationdate>20180304</creationdate><title>1D morphodynamic modelling using a simplified grain size description</title><author>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1D numerical model</topic><topic>Accretion</topic><topic>Adaptation</topic><topic>Aggradation</topic><topic>Computer simulation</topic><topic>downstream fining</topic><topic>Environmental Sciences</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Gravel</topic><topic>Mathematical models</topic><topic>median grain size</topic><topic>Modelling</topic><topic>Particle size</topic><topic>Sediment</topic><topic>Sediment aggradation</topic><topic>Sediment sorting</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Size distribution</topic><topic>sorting coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camenen, Benoît</creatorcontrib><creatorcontrib>Béraud, Claire</creatorcontrib><creatorcontrib>Le Coz, Jérôme</creatorcontrib><creatorcontrib>Paquier, André</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of hydraulic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camenen, Benoît</au><au>Béraud, Claire</au><au>Le Coz, Jérôme</au><au>Paquier, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D morphodynamic modelling using a simplified grain size description</atitle><jtitle>Journal of hydraulic research</jtitle><date>2018-03-04</date><risdate>2018</risdate><volume>56</volume><issue>2</issue><spage>168</spage><epage>180</epage><pages>168-180</pages><issn>0022-1686</issn><eissn>1814-2079</eissn><abstract>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length , classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths ( , ). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</abstract><cop>Madrid</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00221686.2017.1312575</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1243-6955</orcidid><orcidid>https://orcid.org/0000-0002-5851-2442</orcidid><orcidid>https://orcid.org/0000-0003-1677-5225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1686
ispartof Journal of hydraulic research, 2018-03, Vol.56 (2), p.168-180
issn 0022-1686
1814-2079
language eng
recordid cdi_crossref_primary_10_1080_00221686_2017_1312575
source Taylor & Francis Journals Complete
subjects 1D numerical model
Accretion
Adaptation
Aggradation
Computer simulation
downstream fining
Environmental Sciences
Grain size
Grain size distribution
Gravel
Mathematical models
median grain size
Modelling
Particle size
Sediment
Sediment aggradation
Sediment sorting
Sediment transport
Sediments
Size distribution
sorting coefficient
title 1D morphodynamic modelling using a simplified grain size description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D%20morphodynamic%20modelling%20using%20a%20simplified%20grain%20size%20description&rft.jtitle=Journal%20of%20hydraulic%20research&rft.au=Camenen,%20Beno%C3%AEt&rft.date=2018-03-04&rft.volume=56&rft.issue=2&rft.spage=168&rft.epage=180&rft.pages=168-180&rft.issn=0022-1686&rft.eissn=1814-2079&rft_id=info:doi/10.1080/00221686.2017.1312575&rft_dat=%3Cproquest_cross%3E2016563885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016563885&rft_id=info:pmid/&rfr_iscdi=true