1D morphodynamic modelling using a simplified grain size description
This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distri...
Gespeichert in:
Veröffentlicht in: | Journal of hydraulic research 2018-03, Vol.56 (2), p.168-180 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 2 |
container_start_page | 168 |
container_title | Journal of hydraulic research |
container_volume | 56 |
creator | Camenen, Benoît Béraud, Claire Le Coz, Jérôme Paquier, André |
description | This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter
and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length
, classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of
and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths (
,
). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications. |
doi_str_mv | 10.1080/00221686.2017.1312575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00221686_2017_1312575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2016563885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhw5WJqkpm8dpb6qFBwo-uQZpI2ZWYyJlOl_nozTHXp5l7u4TuHywHgGsEZghzeQYgxopzOMERshgqECSMnYII4KnMMmTgFk4HJB-gcXMS4Syelgk7AA3rIGh-6ra8OrWqcTldl6tq1m2wfh6my6JqudtaZKtsE5dokfJusMlEH1_XOt5fgzKo6mqvjnoL3p8e3xTJfvT6_LOarXJdI9Dlma1xaqCsiUKHWukJQcQGLkgkCLeZMG15RLQhTVgmjFbcKMqJtgRmlJS2m4HbM3apadsE1KhykV04u5ys5aBCJkhSl-ESJvRnZLviPvYm93Pl9aNN7MtVECS04J4kiI6WDjzEY-xeLoBzKlb_lDi4mj-Um3_3oc631oVFfPtSV7NWh9sEG1WoXZfF_xA-9y38b</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016563885</pqid></control><display><type>article</type><title>1D morphodynamic modelling using a simplified grain size description</title><source>Taylor & Francis Journals Complete</source><creator>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</creator><creatorcontrib>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</creatorcontrib><description>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter
and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length
, classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of
and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths (
,
). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</description><identifier>ISSN: 0022-1686</identifier><identifier>EISSN: 1814-2079</identifier><identifier>DOI: 10.1080/00221686.2017.1312575</identifier><language>eng</language><publisher>Madrid: Taylor & Francis</publisher><subject>1D numerical model ; Accretion ; Adaptation ; Aggradation ; Computer simulation ; downstream fining ; Environmental Sciences ; Grain size ; Grain size distribution ; Gravel ; Mathematical models ; median grain size ; Modelling ; Particle size ; Sediment ; Sediment aggradation ; Sediment sorting ; Sediment transport ; Sediments ; Size distribution ; sorting coefficient</subject><ispartof>Journal of hydraulic research, 2018-03, Vol.56 (2), p.168-180</ispartof><rights>2017 International Association for Hydro-Environment Engineering and Research 2017</rights><rights>2017 International Association for Hydro-Environment Engineering and Research</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</citedby><cites>FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</cites><orcidid>0000-0003-1243-6955 ; 0000-0002-5851-2442 ; 0000-0003-1677-5225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00221686.2017.1312575$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00221686.2017.1312575$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,59626,60415</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01945349$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Camenen, Benoît</creatorcontrib><creatorcontrib>Béraud, Claire</creatorcontrib><creatorcontrib>Le Coz, Jérôme</creatorcontrib><creatorcontrib>Paquier, André</creatorcontrib><title>1D morphodynamic modelling using a simplified grain size description</title><title>Journal of hydraulic research</title><description>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter
and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length
, classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of
and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths (
,
). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</description><subject>1D numerical model</subject><subject>Accretion</subject><subject>Adaptation</subject><subject>Aggradation</subject><subject>Computer simulation</subject><subject>downstream fining</subject><subject>Environmental Sciences</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>Gravel</subject><subject>Mathematical models</subject><subject>median grain size</subject><subject>Modelling</subject><subject>Particle size</subject><subject>Sediment</subject><subject>Sediment aggradation</subject><subject>Sediment sorting</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Size distribution</subject><subject>sorting coefficient</subject><issn>0022-1686</issn><issn>1814-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhw5WJqkpm8dpb6qFBwo-uQZpI2ZWYyJlOl_nozTHXp5l7u4TuHywHgGsEZghzeQYgxopzOMERshgqECSMnYII4KnMMmTgFk4HJB-gcXMS4Syelgk7AA3rIGh-6ra8OrWqcTldl6tq1m2wfh6my6JqudtaZKtsE5dokfJusMlEH1_XOt5fgzKo6mqvjnoL3p8e3xTJfvT6_LOarXJdI9Dlma1xaqCsiUKHWukJQcQGLkgkCLeZMG15RLQhTVgmjFbcKMqJtgRmlJS2m4HbM3apadsE1KhykV04u5ys5aBCJkhSl-ESJvRnZLviPvYm93Pl9aNN7MtVECS04J4kiI6WDjzEY-xeLoBzKlb_lDi4mj-Um3_3oc631oVFfPtSV7NWh9sEG1WoXZfF_xA-9y38b</recordid><startdate>20180304</startdate><enddate>20180304</enddate><creator>Camenen, Benoît</creator><creator>Béraud, Claire</creator><creator>Le Coz, Jérôme</creator><creator>Paquier, André</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1243-6955</orcidid><orcidid>https://orcid.org/0000-0002-5851-2442</orcidid><orcidid>https://orcid.org/0000-0003-1677-5225</orcidid></search><sort><creationdate>20180304</creationdate><title>1D morphodynamic modelling using a simplified grain size description</title><author>Camenen, Benoît ; Béraud, Claire ; Le Coz, Jérôme ; Paquier, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-27b24f0cd5913abcd10a890347950f287ce8d6c957afa9eca8fa075cf32766463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>1D numerical model</topic><topic>Accretion</topic><topic>Adaptation</topic><topic>Aggradation</topic><topic>Computer simulation</topic><topic>downstream fining</topic><topic>Environmental Sciences</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>Gravel</topic><topic>Mathematical models</topic><topic>median grain size</topic><topic>Modelling</topic><topic>Particle size</topic><topic>Sediment</topic><topic>Sediment aggradation</topic><topic>Sediment sorting</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Size distribution</topic><topic>sorting coefficient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camenen, Benoît</creatorcontrib><creatorcontrib>Béraud, Claire</creatorcontrib><creatorcontrib>Le Coz, Jérôme</creatorcontrib><creatorcontrib>Paquier, André</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of hydraulic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camenen, Benoît</au><au>Béraud, Claire</au><au>Le Coz, Jérôme</au><au>Paquier, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1D morphodynamic modelling using a simplified grain size description</atitle><jtitle>Journal of hydraulic research</jtitle><date>2018-03-04</date><risdate>2018</risdate><volume>56</volume><issue>2</issue><spage>168</spage><epage>180</epage><pages>168-180</pages><issn>0022-1686</issn><eissn>1814-2079</eissn><abstract>This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel-sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter
and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length
, classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of
and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths (
,
). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.</abstract><cop>Madrid</cop><pub>Taylor & Francis</pub><doi>10.1080/00221686.2017.1312575</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1243-6955</orcidid><orcidid>https://orcid.org/0000-0002-5851-2442</orcidid><orcidid>https://orcid.org/0000-0003-1677-5225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1686 |
ispartof | Journal of hydraulic research, 2018-03, Vol.56 (2), p.168-180 |
issn | 0022-1686 1814-2079 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00221686_2017_1312575 |
source | Taylor & Francis Journals Complete |
subjects | 1D numerical model Accretion Adaptation Aggradation Computer simulation downstream fining Environmental Sciences Grain size Grain size distribution Gravel Mathematical models median grain size Modelling Particle size Sediment Sediment aggradation Sediment sorting Sediment transport Sediments Size distribution sorting coefficient |
title | 1D morphodynamic modelling using a simplified grain size description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1D%20morphodynamic%20modelling%20using%20a%20simplified%20grain%20size%20description&rft.jtitle=Journal%20of%20hydraulic%20research&rft.au=Camenen,%20Beno%C3%AEt&rft.date=2018-03-04&rft.volume=56&rft.issue=2&rft.spage=168&rft.epage=180&rft.pages=168-180&rft.issn=0022-1686&rft.eissn=1814-2079&rft_id=info:doi/10.1080/00221686.2017.1312575&rft_dat=%3Cproquest_cross%3E2016563885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016563885&rft_id=info:pmid/&rfr_iscdi=true |