Heuristic algorithms for integrated workforce allocation and scheduling of perishable products
We study a problem from a real-world application, in which a daily set of orders must be processed following two stages, consisting of preparing perishable products on benches and allocating them to conveyors to be packed in disposable trays. Daily decisions must be made regarding the number and sta...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2023-10, Vol.61 (20), p.7048-7063 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7063 |
---|---|
container_issue | 20 |
container_start_page | 7048 |
container_title | International journal of production research |
container_volume | 61 |
creator | Bolsi, Beatrice de Lima, Vinícius Loti Alves de Queiroz, Thiago Iori, Manuel |
description | We study a problem from a real-world application, in which a daily set of orders must be processed following two stages, consisting of preparing perishable products on benches and allocating them to conveyors to be packed in disposable trays. Daily decisions must be made regarding the number and start time of working shifts, the number of workers and their allocation to machines, and the scheduling of orders in a two-stage flexible flow shop environment. The flow shop environment of the studied problem is common in many industries of perishable products, making the problem very general. The problem involves a number of operational constraints, and three objective functions that are minimised in a lexicographic way. To solve the problem, we implement a constructive heuristic and embed it within three metaheuristics: a Random multi-start algorithm (MR), a Biased random key genetic algorithm (BRKGA), and a Variable neighbourhood search (VNS) based one. We perform computational experiments over a set of realistic instances, and present a lower bound obtained from a constraint programming model for the scheduling counterpart. The results of the experiments show that the BRKGA is the most effective in practice for the integrated problem of workforce allocation and scheduling. |
doi_str_mv | 10.1080/00207543.2022.2144525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2022_2144525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850409027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3b02bd3c21e1d0c2da96d54b487175fdadeb7c4fa8261e880fe95b3760e5ac463</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWD9-ghBwPTWfM5mdUtQKBTcKrgyZJNOmTic1ySD992ZsxZ1v8-Bx7rtwALjCaIqRQDcIEVRxRqcEETIlmDFO-BGYYFqWBRfi7RhMRqYYoVNwFuMa5eGCTcD73A7BxeQ0VN3SB5dWmwhbH6Drk10GlayBXz585JO2mem8Vsn5HqrewKhX1gyd65fQt3Br86eVajoLt8GbQad4AU5a1UV7edjn4PXh_mU2LxbPj0-zu0Whac1TQRtEGkM1wRYbpIlRdWk4a5iocMVbo4xtKs1aJUiJrRCotTVvaFUiy5VmJT0H1_u_ufhzsDHJtR9CnyslERwxVCNSZYrvKR18jMG2chvcRoWdxEiOKuWvSjmqlAeVOQf3Oat97-JfSpQVYQT_ILd7xPXZ1EZlZZ2RSe06H9qgep1j9P-Wb3azhtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850409027</pqid></control><display><type>article</type><title>Heuristic algorithms for integrated workforce allocation and scheduling of perishable products</title><source>Taylor & Francis Journals Complete</source><creator>Bolsi, Beatrice ; de Lima, Vinícius Loti ; Alves de Queiroz, Thiago ; Iori, Manuel</creator><creatorcontrib>Bolsi, Beatrice ; de Lima, Vinícius Loti ; Alves de Queiroz, Thiago ; Iori, Manuel</creatorcontrib><description>We study a problem from a real-world application, in which a daily set of orders must be processed following two stages, consisting of preparing perishable products on benches and allocating them to conveyors to be packed in disposable trays. Daily decisions must be made regarding the number and start time of working shifts, the number of workers and their allocation to machines, and the scheduling of orders in a two-stage flexible flow shop environment. The flow shop environment of the studied problem is common in many industries of perishable products, making the problem very general. The problem involves a number of operational constraints, and three objective functions that are minimised in a lexicographic way. To solve the problem, we implement a constructive heuristic and embed it within three metaheuristics: a Random multi-start algorithm (MR), a Biased random key genetic algorithm (BRKGA), and a Variable neighbourhood search (VNS) based one. We perform computational experiments over a set of realistic instances, and present a lower bound obtained from a constraint programming model for the scheduling counterpart. The results of the experiments show that the BRKGA is the most effective in practice for the integrated problem of workforce allocation and scheduling.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2022.2144525</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Constraint modelling ; Flexible flow shop problem ; Food industry ; Genetic algorithms ; Heuristic methods ; Lower bounds ; Metaheuristics ; Perishable products ; Scheduling ; Trays ; Workforce allocation</subject><ispartof>International journal of production research, 2023-10, Vol.61 (20), p.7048-7063</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3b02bd3c21e1d0c2da96d54b487175fdadeb7c4fa8261e880fe95b3760e5ac463</citedby><cites>FETCH-LOGICAL-c395t-3b02bd3c21e1d0c2da96d54b487175fdadeb7c4fa8261e880fe95b3760e5ac463</cites><orcidid>0000-0003-2097-6572 ; 0000-0002-4805-4468 ; 0000-0003-2674-3366 ; 0000-0002-6968-8689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2022.2144525$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2022.2144525$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Bolsi, Beatrice</creatorcontrib><creatorcontrib>de Lima, Vinícius Loti</creatorcontrib><creatorcontrib>Alves de Queiroz, Thiago</creatorcontrib><creatorcontrib>Iori, Manuel</creatorcontrib><title>Heuristic algorithms for integrated workforce allocation and scheduling of perishable products</title><title>International journal of production research</title><description>We study a problem from a real-world application, in which a daily set of orders must be processed following two stages, consisting of preparing perishable products on benches and allocating them to conveyors to be packed in disposable trays. Daily decisions must be made regarding the number and start time of working shifts, the number of workers and their allocation to machines, and the scheduling of orders in a two-stage flexible flow shop environment. The flow shop environment of the studied problem is common in many industries of perishable products, making the problem very general. The problem involves a number of operational constraints, and three objective functions that are minimised in a lexicographic way. To solve the problem, we implement a constructive heuristic and embed it within three metaheuristics: a Random multi-start algorithm (MR), a Biased random key genetic algorithm (BRKGA), and a Variable neighbourhood search (VNS) based one. We perform computational experiments over a set of realistic instances, and present a lower bound obtained from a constraint programming model for the scheduling counterpart. The results of the experiments show that the BRKGA is the most effective in practice for the integrated problem of workforce allocation and scheduling.</description><subject>Constraint modelling</subject><subject>Flexible flow shop problem</subject><subject>Food industry</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Lower bounds</subject><subject>Metaheuristics</subject><subject>Perishable products</subject><subject>Scheduling</subject><subject>Trays</subject><subject>Workforce allocation</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWD9-ghBwPTWfM5mdUtQKBTcKrgyZJNOmTic1ySD992ZsxZ1v8-Bx7rtwALjCaIqRQDcIEVRxRqcEETIlmDFO-BGYYFqWBRfi7RhMRqYYoVNwFuMa5eGCTcD73A7BxeQ0VN3SB5dWmwhbH6Drk10GlayBXz585JO2mem8Vsn5HqrewKhX1gyd65fQt3Br86eVajoLt8GbQad4AU5a1UV7edjn4PXh_mU2LxbPj0-zu0Whac1TQRtEGkM1wRYbpIlRdWk4a5iocMVbo4xtKs1aJUiJrRCotTVvaFUiy5VmJT0H1_u_ufhzsDHJtR9CnyslERwxVCNSZYrvKR18jMG2chvcRoWdxEiOKuWvSjmqlAeVOQf3Oat97-JfSpQVYQT_ILd7xPXZ1EZlZZ2RSe06H9qgep1j9P-Wb3azhtY</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Bolsi, Beatrice</creator><creator>de Lima, Vinícius Loti</creator><creator>Alves de Queiroz, Thiago</creator><creator>Iori, Manuel</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2097-6572</orcidid><orcidid>https://orcid.org/0000-0002-4805-4468</orcidid><orcidid>https://orcid.org/0000-0003-2674-3366</orcidid><orcidid>https://orcid.org/0000-0002-6968-8689</orcidid></search><sort><creationdate>20231018</creationdate><title>Heuristic algorithms for integrated workforce allocation and scheduling of perishable products</title><author>Bolsi, Beatrice ; de Lima, Vinícius Loti ; Alves de Queiroz, Thiago ; Iori, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3b02bd3c21e1d0c2da96d54b487175fdadeb7c4fa8261e880fe95b3760e5ac463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraint modelling</topic><topic>Flexible flow shop problem</topic><topic>Food industry</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Lower bounds</topic><topic>Metaheuristics</topic><topic>Perishable products</topic><topic>Scheduling</topic><topic>Trays</topic><topic>Workforce allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolsi, Beatrice</creatorcontrib><creatorcontrib>de Lima, Vinícius Loti</creatorcontrib><creatorcontrib>Alves de Queiroz, Thiago</creatorcontrib><creatorcontrib>Iori, Manuel</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolsi, Beatrice</au><au>de Lima, Vinícius Loti</au><au>Alves de Queiroz, Thiago</au><au>Iori, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristic algorithms for integrated workforce allocation and scheduling of perishable products</atitle><jtitle>International journal of production research</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>61</volume><issue>20</issue><spage>7048</spage><epage>7063</epage><pages>7048-7063</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>We study a problem from a real-world application, in which a daily set of orders must be processed following two stages, consisting of preparing perishable products on benches and allocating them to conveyors to be packed in disposable trays. Daily decisions must be made regarding the number and start time of working shifts, the number of workers and their allocation to machines, and the scheduling of orders in a two-stage flexible flow shop environment. The flow shop environment of the studied problem is common in many industries of perishable products, making the problem very general. The problem involves a number of operational constraints, and three objective functions that are minimised in a lexicographic way. To solve the problem, we implement a constructive heuristic and embed it within three metaheuristics: a Random multi-start algorithm (MR), a Biased random key genetic algorithm (BRKGA), and a Variable neighbourhood search (VNS) based one. We perform computational experiments over a set of realistic instances, and present a lower bound obtained from a constraint programming model for the scheduling counterpart. The results of the experiments show that the BRKGA is the most effective in practice for the integrated problem of workforce allocation and scheduling.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2022.2144525</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2097-6572</orcidid><orcidid>https://orcid.org/0000-0002-4805-4468</orcidid><orcidid>https://orcid.org/0000-0003-2674-3366</orcidid><orcidid>https://orcid.org/0000-0002-6968-8689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2023-10, Vol.61 (20), p.7048-7063 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207543_2022_2144525 |
source | Taylor & Francis Journals Complete |
subjects | Constraint modelling Flexible flow shop problem Food industry Genetic algorithms Heuristic methods Lower bounds Metaheuristics Perishable products Scheduling Trays Workforce allocation |
title | Heuristic algorithms for integrated workforce allocation and scheduling of perishable products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20algorithms%20for%20integrated%20workforce%20allocation%20and%20scheduling%20of%20perishable%20products&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Bolsi,%20Beatrice&rft.date=2023-10-18&rft.volume=61&rft.issue=20&rft.spage=7048&rft.epage=7063&rft.pages=7048-7063&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2022.2144525&rft_dat=%3Cproquest_cross%3E2850409027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850409027&rft_id=info:pmid/&rfr_iscdi=true |