Designing profitable and responsive supply chains under uncertainty
In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first obj...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2021-01, Vol.59 (1), p.213-225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 1 |
container_start_page | 213 |
container_title | International journal of production research |
container_volume | 59 |
creator | Azaron, Amir Venkatadri, Uday Farhang Doost, Alireza |
description | In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology. |
doi_str_mv | 10.1080/00207543.2020.1785036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2020_1785036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478469305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKHguWvSJG16U9ZPWPCi4C2k6WTN0k1r0ir996Z0xZs5TGaG550ZXoQuCV4RLPA1xhkuOKOrLCYrUgiOaX6EFoTmecqFeD9Gi4lJJ-gUnYWww_FxwRZofQfBbp1126TzrbG9qhpIlKsTD6FrXbBfkISh65ox0R_KupAMrgYfowbfx0Y_nqMTo5oAF4d_id4e7l_XT-nm5fF5fbtJNS15nxYkgwwwZIwxwMqwquYMKIk1lDQvgZiKk4oXxBBqSs0VzQyphABaMY1LukRX89x46ecAoZe7dvAurpQZKwTLS4p5pPhMad-G4MHIztu98qMkWE5-yV-_5OSXPPgVdcmsA906G_5UBSsYJzgnEbmZEetM6_fqu_VNLXs1Nq03XjkdZfT_LT8EEXvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478469305</pqid></control><display><type>article</type><title>Designing profitable and responsive supply chains under uncertainty</title><source>Taylor & Francis Journals Complete</source><source>EBSCOhost Business Source Complete</source><creator>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</creator><creatorcontrib>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</creatorcontrib><description>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2020.1785036</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>multiple objective decision making ; Parameter uncertainty ; Pricing ; Random variables ; risk management ; sampling ; Stochastic models ; stochastic programming ; Supply chain management ; Supply chains ; Travel time ; Warehouses</subject><ispartof>International journal of production research, 2021-01, Vol.59 (1), p.213-225</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</citedby><cites>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2020.1785036$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2020.1785036$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Azaron, Amir</creatorcontrib><creatorcontrib>Venkatadri, Uday</creatorcontrib><creatorcontrib>Farhang Doost, Alireza</creatorcontrib><title>Designing profitable and responsive supply chains under uncertainty</title><title>International journal of production research</title><description>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</description><subject>multiple objective decision making</subject><subject>Parameter uncertainty</subject><subject>Pricing</subject><subject>Random variables</subject><subject>risk management</subject><subject>sampling</subject><subject>Stochastic models</subject><subject>stochastic programming</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Travel time</subject><subject>Warehouses</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKHguWvSJG16U9ZPWPCi4C2k6WTN0k1r0ir996Z0xZs5TGaG550ZXoQuCV4RLPA1xhkuOKOrLCYrUgiOaX6EFoTmecqFeD9Gi4lJJ-gUnYWww_FxwRZofQfBbp1126TzrbG9qhpIlKsTD6FrXbBfkISh65ox0R_KupAMrgYfowbfx0Y_nqMTo5oAF4d_id4e7l_XT-nm5fF5fbtJNS15nxYkgwwwZIwxwMqwquYMKIk1lDQvgZiKk4oXxBBqSs0VzQyphABaMY1LukRX89x46ecAoZe7dvAurpQZKwTLS4p5pPhMad-G4MHIztu98qMkWE5-yV-_5OSXPPgVdcmsA906G_5UBSsYJzgnEbmZEetM6_fqu_VNLXs1Nq03XjkdZfT_LT8EEXvW</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Azaron, Amir</creator><creator>Venkatadri, Uday</creator><creator>Farhang Doost, Alireza</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210102</creationdate><title>Designing profitable and responsive supply chains under uncertainty</title><author>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>multiple objective decision making</topic><topic>Parameter uncertainty</topic><topic>Pricing</topic><topic>Random variables</topic><topic>risk management</topic><topic>sampling</topic><topic>Stochastic models</topic><topic>stochastic programming</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Travel time</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaron, Amir</creatorcontrib><creatorcontrib>Venkatadri, Uday</creatorcontrib><creatorcontrib>Farhang Doost, Alireza</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaron, Amir</au><au>Venkatadri, Uday</au><au>Farhang Doost, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing profitable and responsive supply chains under uncertainty</atitle><jtitle>International journal of production research</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>213</spage><epage>225</epage><pages>213-225</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2020.1785036</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2021-01, Vol.59 (1), p.213-225 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207543_2020_1785036 |
source | Taylor & Francis Journals Complete; EBSCOhost Business Source Complete |
subjects | multiple objective decision making Parameter uncertainty Pricing Random variables risk management sampling Stochastic models stochastic programming Supply chain management Supply chains Travel time Warehouses |
title | Designing profitable and responsive supply chains under uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20profitable%20and%20responsive%20supply%20chains%20under%20uncertainty&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Azaron,%20Amir&rft.date=2021-01-02&rft.volume=59&rft.issue=1&rft.spage=213&rft.epage=225&rft.pages=213-225&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2020.1785036&rft_dat=%3Cproquest_cross%3E2478469305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478469305&rft_id=info:pmid/&rfr_iscdi=true |