Designing profitable and responsive supply chains under uncertainty

In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2021-01, Vol.59 (1), p.213-225
Hauptverfasser: Azaron, Amir, Venkatadri, Uday, Farhang Doost, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 1
container_start_page 213
container_title International journal of production research
container_volume 59
creator Azaron, Amir
Venkatadri, Uday
Farhang Doost, Alireza
description In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.
doi_str_mv 10.1080/00207543.2020.1785036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2020_1785036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478469305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKHguWvSJG16U9ZPWPCi4C2k6WTN0k1r0ir996Z0xZs5TGaG550ZXoQuCV4RLPA1xhkuOKOrLCYrUgiOaX6EFoTmecqFeD9Gi4lJJ-gUnYWww_FxwRZofQfBbp1126TzrbG9qhpIlKsTD6FrXbBfkISh65ox0R_KupAMrgYfowbfx0Y_nqMTo5oAF4d_id4e7l_XT-nm5fF5fbtJNS15nxYkgwwwZIwxwMqwquYMKIk1lDQvgZiKk4oXxBBqSs0VzQyphABaMY1LukRX89x46ecAoZe7dvAurpQZKwTLS4p5pPhMad-G4MHIztu98qMkWE5-yV-_5OSXPPgVdcmsA906G_5UBSsYJzgnEbmZEetM6_fqu_VNLXs1Nq03XjkdZfT_LT8EEXvW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478469305</pqid></control><display><type>article</type><title>Designing profitable and responsive supply chains under uncertainty</title><source>Taylor &amp; Francis Journals Complete</source><source>EBSCOhost Business Source Complete</source><creator>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</creator><creatorcontrib>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</creatorcontrib><description>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2020.1785036</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>multiple objective decision making ; Parameter uncertainty ; Pricing ; Random variables ; risk management ; sampling ; Stochastic models ; stochastic programming ; Supply chain management ; Supply chains ; Travel time ; Warehouses</subject><ispartof>International journal of production research, 2021-01, Vol.59 (1), p.213-225</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</citedby><cites>FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2020.1785036$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2020.1785036$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Azaron, Amir</creatorcontrib><creatorcontrib>Venkatadri, Uday</creatorcontrib><creatorcontrib>Farhang Doost, Alireza</creatorcontrib><title>Designing profitable and responsive supply chains under uncertainty</title><title>International journal of production research</title><description>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</description><subject>multiple objective decision making</subject><subject>Parameter uncertainty</subject><subject>Pricing</subject><subject>Random variables</subject><subject>risk management</subject><subject>sampling</subject><subject>Stochastic models</subject><subject>stochastic programming</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Travel time</subject><subject>Warehouses</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKHguWvSJG16U9ZPWPCi4C2k6WTN0k1r0ir996Z0xZs5TGaG550ZXoQuCV4RLPA1xhkuOKOrLCYrUgiOaX6EFoTmecqFeD9Gi4lJJ-gUnYWww_FxwRZofQfBbp1126TzrbG9qhpIlKsTD6FrXbBfkISh65ox0R_KupAMrgYfowbfx0Y_nqMTo5oAF4d_id4e7l_XT-nm5fF5fbtJNS15nxYkgwwwZIwxwMqwquYMKIk1lDQvgZiKk4oXxBBqSs0VzQyphABaMY1LukRX89x46ecAoZe7dvAurpQZKwTLS4p5pPhMad-G4MHIztu98qMkWE5-yV-_5OSXPPgVdcmsA906G_5UBSsYJzgnEbmZEetM6_fqu_VNLXs1Nq03XjkdZfT_LT8EEXvW</recordid><startdate>20210102</startdate><enddate>20210102</enddate><creator>Azaron, Amir</creator><creator>Venkatadri, Uday</creator><creator>Farhang Doost, Alireza</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210102</creationdate><title>Designing profitable and responsive supply chains under uncertainty</title><author>Azaron, Amir ; Venkatadri, Uday ; Farhang Doost, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-712e2e0e2444e0af4bd54e31244e9369e1fb51b571f13f9c5a32f1b88e3b4c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>multiple objective decision making</topic><topic>Parameter uncertainty</topic><topic>Pricing</topic><topic>Random variables</topic><topic>risk management</topic><topic>sampling</topic><topic>Stochastic models</topic><topic>stochastic programming</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Travel time</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaron, Amir</creatorcontrib><creatorcontrib>Venkatadri, Uday</creatorcontrib><creatorcontrib>Farhang Doost, Alireza</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaron, Amir</au><au>Venkatadri, Uday</au><au>Farhang Doost, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing profitable and responsive supply chains under uncertainty</atitle><jtitle>International journal of production research</jtitle><date>2021-01-02</date><risdate>2021</risdate><volume>59</volume><issue>1</issue><spage>213</spage><epage>225</epage><pages>213-225</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>In this paper, we develop a multi-objective two-stage stochastic programming model, which takes into account the selection of warehouse and retailer sites and the decision about production levels, inventory levels, and shipping quantities among the entities of the supply chain network. The first objective function is to maximise the chain's total profit over multiple periods, and the second objective function is to minimise the total travel times for unsatisfied customers, whose demands must be met by retailers which have been established in other markets, to maximise the chain's responsiveness. Demands, selling prices and productions times at manufacturing sites are all considered as uncertain parameters. The two objective functions are in conflict with each other, and we use ϵ-constraint method to generate a set of Pareto optimal solutions for the proposed multi-objective problem. We then generalise the case and assume the uncertain parameters are continuously distributed random variables and use a simulation approach called sample average approximation (SAA) scheme to compute near optimal solutions to the stochastic model with potentially infinite number of scenarios. A computational study involving hypothetical networks of different sizes and a real supply chain network are presented to highlight the efficiency of the proposed solution methodology.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2020.1785036</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2021-01, Vol.59 (1), p.213-225
issn 0020-7543
1366-588X
language eng
recordid cdi_crossref_primary_10_1080_00207543_2020_1785036
source Taylor & Francis Journals Complete; EBSCOhost Business Source Complete
subjects multiple objective decision making
Parameter uncertainty
Pricing
Random variables
risk management
sampling
Stochastic models
stochastic programming
Supply chain management
Supply chains
Travel time
Warehouses
title Designing profitable and responsive supply chains under uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20profitable%20and%20responsive%20supply%20chains%20under%20uncertainty&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Azaron,%20Amir&rft.date=2021-01-02&rft.volume=59&rft.issue=1&rft.spage=213&rft.epage=225&rft.pages=213-225&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2020.1785036&rft_dat=%3Cproquest_cross%3E2478469305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478469305&rft_id=info:pmid/&rfr_iscdi=true