Machine-based production scheduling for rotomoulded plastics manufacturing
In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2021-03, Vol.59 (5), p.1301-1318, Article 1301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1318 |
---|---|
container_issue | 5 |
container_start_page | 1301 |
container_title | International journal of production research |
container_volume | 59 |
creator | Baxendale, Mark McGree, James M. Bellette, Aaron Corry, Paul |
description | In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia. |
doi_str_mv | 10.1080/00207543.2020.1727046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2020_1727046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497368287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</originalsourceid><addsrcrecordid>eNqFkMtKxDAARYMoOI5-glBw3TGPpklxo4hPRtwouAtpkjoZ2mZMUmT-3pSOCC40m2Rx7r3hAHCK4AJBDs8hxJDRgixweiwQwwwW5R6YIVKWOeX8bR_MRiYfoUNwFMIapkN5MQOPT1KtbG_yWgajs413elDRuj4LamX00Nr-PWucz7yLrnNDq0eqlSFaFbJO9kMjVRx8wo7BQSPbYE529xy83t68XN_ny-e7h-urZa5IRWOOjWko1piVJcKUaMUUqnEBC6gwVdCQqtYFNZLXJarqWiGskKlkw2rNYFNQMgdnU2_67MdgQhRrN_g-TQpcVIyUHHOWKDpRyrsQvGnExttO-q1AUIzaxLc2MWoTO20pl005o1xvw0-KUUQqhDlMyMWvamWjHKVFL23778DllLZ98trJT-dbLaLcts43XvYqjZK_K74A5BiROw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497368287</pqid></control><display><type>article</type><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><source>Taylor & Francis:Master (3349 titles)</source><source>Business Source Complete</source><creator>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</creator><creatorcontrib>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</creatorcontrib><description>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</description><identifier>ISSN: 0020-7543</identifier><identifier>ISSN: 1366-588X</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2020.1727046</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Algorithms ; Commonality ; Job shops ; metaheuristics ; Mixed integer ; mixed integer programming ; Production scheduling ; rotational moulding ; scheduling ; Search algorithms ; Simulated annealing ; Tabu search</subject><ispartof>International journal of production research, 2021-03, Vol.59 (5), p.1301-1318, Article 1301</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</citedby><cites>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</cites><orcidid>0000-0003-3313-5967 ; 0000-0003-2997-8929 ; 0000-0002-1920-3217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2020.1727046$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2020.1727046$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Baxendale, Mark</creatorcontrib><creatorcontrib>McGree, James M.</creatorcontrib><creatorcontrib>Bellette, Aaron</creatorcontrib><creatorcontrib>Corry, Paul</creatorcontrib><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><title>International journal of production research</title><description>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</description><subject>Algorithms</subject><subject>Commonality</subject><subject>Job shops</subject><subject>metaheuristics</subject><subject>Mixed integer</subject><subject>mixed integer programming</subject><subject>Production scheduling</subject><subject>rotational moulding</subject><subject>scheduling</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><subject>Tabu search</subject><issn>0020-7543</issn><issn>1366-588X</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAARYMoOI5-glBw3TGPpklxo4hPRtwouAtpkjoZ2mZMUmT-3pSOCC40m2Rx7r3hAHCK4AJBDs8hxJDRgixweiwQwwwW5R6YIVKWOeX8bR_MRiYfoUNwFMIapkN5MQOPT1KtbG_yWgajs413elDRuj4LamX00Nr-PWucz7yLrnNDq0eqlSFaFbJO9kMjVRx8wo7BQSPbYE529xy83t68XN_ny-e7h-urZa5IRWOOjWko1piVJcKUaMUUqnEBC6gwVdCQqtYFNZLXJarqWiGskKlkw2rNYFNQMgdnU2_67MdgQhRrN_g-TQpcVIyUHHOWKDpRyrsQvGnExttO-q1AUIzaxLc2MWoTO20pl005o1xvw0-KUUQqhDlMyMWvamWjHKVFL23778DllLZ98trJT-dbLaLcts43XvYqjZK_K74A5BiROw</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Baxendale, Mark</creator><creator>McGree, James M.</creator><creator>Bellette, Aaron</creator><creator>Corry, Paul</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3313-5967</orcidid><orcidid>https://orcid.org/0000-0003-2997-8929</orcidid><orcidid>https://orcid.org/0000-0002-1920-3217</orcidid></search><sort><creationdate>20210304</creationdate><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><author>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Commonality</topic><topic>Job shops</topic><topic>metaheuristics</topic><topic>Mixed integer</topic><topic>mixed integer programming</topic><topic>Production scheduling</topic><topic>rotational moulding</topic><topic>scheduling</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxendale, Mark</creatorcontrib><creatorcontrib>McGree, James M.</creatorcontrib><creatorcontrib>Bellette, Aaron</creatorcontrib><creatorcontrib>Corry, Paul</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxendale, Mark</au><au>McGree, James M.</au><au>Bellette, Aaron</au><au>Corry, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-based production scheduling for rotomoulded plastics manufacturing</atitle><jtitle>International journal of production research</jtitle><date>2021-03-04</date><risdate>2021</risdate><volume>59</volume><issue>5</issue><spage>1301</spage><epage>1318</epage><pages>1301-1318</pages><artnum>1301</artnum><issn>0020-7543</issn><issn>1366-588X</issn><eissn>1366-588X</eissn><abstract>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2020.1727046</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3313-5967</orcidid><orcidid>https://orcid.org/0000-0003-2997-8929</orcidid><orcidid>https://orcid.org/0000-0002-1920-3217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2021-03, Vol.59 (5), p.1301-1318, Article 1301 |
issn | 0020-7543 1366-588X 1366-588X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207543_2020_1727046 |
source | Taylor & Francis:Master (3349 titles); Business Source Complete |
subjects | Algorithms Commonality Job shops metaheuristics Mixed integer mixed integer programming Production scheduling rotational moulding scheduling Search algorithms Simulated annealing Tabu search |
title | Machine-based production scheduling for rotomoulded plastics manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-based%20production%20scheduling%20for%20rotomoulded%20plastics%20manufacturing&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Baxendale,%20Mark&rft.date=2021-03-04&rft.volume=59&rft.issue=5&rft.spage=1301&rft.epage=1318&rft.pages=1301-1318&rft.artnum=1301&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2020.1727046&rft_dat=%3Cproquest_cross%3E2497368287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497368287&rft_id=info:pmid/&rfr_iscdi=true |