Machine-based production scheduling for rotomoulded plastics manufacturing

In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2021-03, Vol.59 (5), p.1301-1318, Article 1301
Hauptverfasser: Baxendale, Mark, McGree, James M., Bellette, Aaron, Corry, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1318
container_issue 5
container_start_page 1301
container_title International journal of production research
container_volume 59
creator Baxendale, Mark
McGree, James M.
Bellette, Aaron
Corry, Paul
description In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.
doi_str_mv 10.1080/00207543.2020.1727046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2020_1727046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497368287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</originalsourceid><addsrcrecordid>eNqFkMtKxDAARYMoOI5-glBw3TGPpklxo4hPRtwouAtpkjoZ2mZMUmT-3pSOCC40m2Rx7r3hAHCK4AJBDs8hxJDRgixweiwQwwwW5R6YIVKWOeX8bR_MRiYfoUNwFMIapkN5MQOPT1KtbG_yWgajs413elDRuj4LamX00Nr-PWucz7yLrnNDq0eqlSFaFbJO9kMjVRx8wo7BQSPbYE529xy83t68XN_ny-e7h-urZa5IRWOOjWko1piVJcKUaMUUqnEBC6gwVdCQqtYFNZLXJarqWiGskKlkw2rNYFNQMgdnU2_67MdgQhRrN_g-TQpcVIyUHHOWKDpRyrsQvGnExttO-q1AUIzaxLc2MWoTO20pl005o1xvw0-KUUQqhDlMyMWvamWjHKVFL23778DllLZ98trJT-dbLaLcts43XvYqjZK_K74A5BiROw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497368287</pqid></control><display><type>article</type><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><source>Taylor &amp; Francis:Master (3349 titles)</source><source>Business Source Complete</source><creator>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</creator><creatorcontrib>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</creatorcontrib><description>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</description><identifier>ISSN: 0020-7543</identifier><identifier>ISSN: 1366-588X</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2020.1727046</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Algorithms ; Commonality ; Job shops ; metaheuristics ; Mixed integer ; mixed integer programming ; Production scheduling ; rotational moulding ; scheduling ; Search algorithms ; Simulated annealing ; Tabu search</subject><ispartof>International journal of production research, 2021-03, Vol.59 (5), p.1301-1318, Article 1301</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</citedby><cites>FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</cites><orcidid>0000-0003-3313-5967 ; 0000-0003-2997-8929 ; 0000-0002-1920-3217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2020.1727046$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2020.1727046$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Baxendale, Mark</creatorcontrib><creatorcontrib>McGree, James M.</creatorcontrib><creatorcontrib>Bellette, Aaron</creatorcontrib><creatorcontrib>Corry, Paul</creatorcontrib><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><title>International journal of production research</title><description>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</description><subject>Algorithms</subject><subject>Commonality</subject><subject>Job shops</subject><subject>metaheuristics</subject><subject>Mixed integer</subject><subject>mixed integer programming</subject><subject>Production scheduling</subject><subject>rotational moulding</subject><subject>scheduling</subject><subject>Search algorithms</subject><subject>Simulated annealing</subject><subject>Tabu search</subject><issn>0020-7543</issn><issn>1366-588X</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAARYMoOI5-glBw3TGPpklxo4hPRtwouAtpkjoZ2mZMUmT-3pSOCC40m2Rx7r3hAHCK4AJBDs8hxJDRgixweiwQwwwW5R6YIVKWOeX8bR_MRiYfoUNwFMIapkN5MQOPT1KtbG_yWgajs413elDRuj4LamX00Nr-PWucz7yLrnNDq0eqlSFaFbJO9kMjVRx8wo7BQSPbYE529xy83t68XN_ny-e7h-urZa5IRWOOjWko1piVJcKUaMUUqnEBC6gwVdCQqtYFNZLXJarqWiGskKlkw2rNYFNQMgdnU2_67MdgQhRrN_g-TQpcVIyUHHOWKDpRyrsQvGnExttO-q1AUIzaxLc2MWoTO20pl005o1xvw0-KUUQqhDlMyMWvamWjHKVFL23778DllLZ98trJT-dbLaLcts43XvYqjZK_K74A5BiROw</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Baxendale, Mark</creator><creator>McGree, James M.</creator><creator>Bellette, Aaron</creator><creator>Corry, Paul</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3313-5967</orcidid><orcidid>https://orcid.org/0000-0003-2997-8929</orcidid><orcidid>https://orcid.org/0000-0002-1920-3217</orcidid></search><sort><creationdate>20210304</creationdate><title>Machine-based production scheduling for rotomoulded plastics manufacturing</title><author>Baxendale, Mark ; McGree, James M. ; Bellette, Aaron ; Corry, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2eef52d27661253dc7c1b24040c25c0e39bd45ea8b619bbc12c1e9af7bd70f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Commonality</topic><topic>Job shops</topic><topic>metaheuristics</topic><topic>Mixed integer</topic><topic>mixed integer programming</topic><topic>Production scheduling</topic><topic>rotational moulding</topic><topic>scheduling</topic><topic>Search algorithms</topic><topic>Simulated annealing</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxendale, Mark</creatorcontrib><creatorcontrib>McGree, James M.</creatorcontrib><creatorcontrib>Bellette, Aaron</creatorcontrib><creatorcontrib>Corry, Paul</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxendale, Mark</au><au>McGree, James M.</au><au>Bellette, Aaron</au><au>Corry, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-based production scheduling for rotomoulded plastics manufacturing</atitle><jtitle>International journal of production research</jtitle><date>2021-03-04</date><risdate>2021</risdate><volume>59</volume><issue>5</issue><spage>1301</spage><epage>1318</epage><pages>1301-1318</pages><artnum>1301</artnum><issn>0020-7543</issn><issn>1366-588X</issn><eissn>1366-588X</eissn><abstract>In this paper, production scheduling for rotomoulded plastics manufacturing in a multi-machine environment is considered. The objective is to minimise total tardiness. The problem has some commonality with hybrid flow shop scheduling with batching, where additional constraints are needed to control which machines may be used at each stage. The problem is shown to be NP-hard and is formulated as a mixed integer program. Given consequently large solve times to obtain optimal solutions, simulated annealing and tabu search algorithms were developed alongside a constructive heuristic to obtain near-optimal solutions within a practical time-frame. The solution algorithms were tuned and tested using randomly generated problem instances. The best results in terms of solution quality were generally obtained by simulated annealing. The problem instances were generated to be representative of a real production environment located in Queensland, Australia.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2020.1727046</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3313-5967</orcidid><orcidid>https://orcid.org/0000-0003-2997-8929</orcidid><orcidid>https://orcid.org/0000-0002-1920-3217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2021-03, Vol.59 (5), p.1301-1318, Article 1301
issn 0020-7543
1366-588X
1366-588X
language eng
recordid cdi_crossref_primary_10_1080_00207543_2020_1727046
source Taylor & Francis:Master (3349 titles); Business Source Complete
subjects Algorithms
Commonality
Job shops
metaheuristics
Mixed integer
mixed integer programming
Production scheduling
rotational moulding
scheduling
Search algorithms
Simulated annealing
Tabu search
title Machine-based production scheduling for rotomoulded plastics manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-based%20production%20scheduling%20for%20rotomoulded%20plastics%20manufacturing&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Baxendale,%20Mark&rft.date=2021-03-04&rft.volume=59&rft.issue=5&rft.spage=1301&rft.epage=1318&rft.pages=1301-1318&rft.artnum=1301&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2020.1727046&rft_dat=%3Cproquest_cross%3E2497368287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497368287&rft_id=info:pmid/&rfr_iscdi=true