A theorem on the orders of orbits of a finite permutation group

In this paper we give a proof of the following theorem. Let G be a permutation group on a finite set N. Then the order of G is odd if and only if the degrees of all transitive constituents of G and the degrees of all transitive constituents of each G a (a?N) are odd. The method we devised in proving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematical education in science and technology 1990-03, Vol.21 (2), p.309-310
1. Verfasser: Nyondo†, Andrew Chola
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 2
container_start_page 309
container_title International journal of mathematical education in science and technology
container_volume 21
creator Nyondo†, Andrew Chola
description In this paper we give a proof of the following theorem. Let G be a permutation group on a finite set N. Then the order of G is odd if and only if the degrees of all transitive constituents of G and the degrees of all transitive constituents of each G a (a?N) are odd. The method we devised in proving the above theorem led to an important generalization.
doi_str_mv 10.1080/0020739900210219
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0020739900210219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_0020739900210219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c163t-79530f48a229c8814c1186c59b0c85214c72fdbe54597adb491f48c09a6117133</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKJgXb177B-ovtemH8GDLItfsOBFwVtJ00QjbVNessj-e1PXkyA8mIGZeQzD2CXCFUID1wA51IUQETGeOGIJ8opnZY54zJJFzqL-dsrOvP8EAORcJOx2nYYP7UiPqZsWmjrqNfnUmcg6G36YTI2dbNDprGncBRlsNL-T283n7MTIweuLX1yx1_u7l81jtn1-eNqst5nCqghZLcoCDG9kngvVNMgVYlOpUnSgmliRqzo3fadLXopa9h0XGN0KhKwQayyKFYPDX0XOe9KmncmOkvYtQrsM0P4dIEZuDhE7GUej_HI09G2Q-8GRITkp69vi3_Q3aMpeag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A theorem on the orders of orbits of a finite permutation group</title><source>Taylor &amp; Francis</source><creator>Nyondo†, Andrew Chola</creator><creatorcontrib>Nyondo†, Andrew Chola</creatorcontrib><description>In this paper we give a proof of the following theorem. Let G be a permutation group on a finite set N. Then the order of G is odd if and only if the degrees of all transitive constituents of G and the degrees of all transitive constituents of each G a (a?N) are odd. The method we devised in proving the above theorem led to an important generalization.</description><identifier>ISSN: 0020-739X</identifier><identifier>EISSN: 1464-5211</identifier><identifier>DOI: 10.1080/0020739900210219</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>International journal of mathematical education in science and technology, 1990-03, Vol.21 (2), p.309-310</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/0020739900210219$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/0020739900210219$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Nyondo†, Andrew Chola</creatorcontrib><title>A theorem on the orders of orbits of a finite permutation group</title><title>International journal of mathematical education in science and technology</title><description>In this paper we give a proof of the following theorem. Let G be a permutation group on a finite set N. Then the order of G is odd if and only if the degrees of all transitive constituents of G and the degrees of all transitive constituents of each G a (a?N) are odd. The method we devised in proving the above theorem led to an important generalization.</description><issn>0020-739X</issn><issn>1464-5211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKJgXb177B-ovtemH8GDLItfsOBFwVtJ00QjbVNessj-e1PXkyA8mIGZeQzD2CXCFUID1wA51IUQETGeOGIJ8opnZY54zJJFzqL-dsrOvP8EAORcJOx2nYYP7UiPqZsWmjrqNfnUmcg6G36YTI2dbNDprGncBRlsNL-T283n7MTIweuLX1yx1_u7l81jtn1-eNqst5nCqghZLcoCDG9kngvVNMgVYlOpUnSgmliRqzo3fadLXopa9h0XGN0KhKwQayyKFYPDX0XOe9KmncmOkvYtQrsM0P4dIEZuDhE7GUej_HI09G2Q-8GRITkp69vi3_Q3aMpeag</recordid><startdate>19900301</startdate><enddate>19900301</enddate><creator>Nyondo†, Andrew Chola</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900301</creationdate><title>A theorem on the orders of orbits of a finite permutation group</title><author>Nyondo†, Andrew Chola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c163t-79530f48a229c8814c1186c59b0c85214c72fdbe54597adb491f48c09a6117133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyondo†, Andrew Chola</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mathematical education in science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyondo†, Andrew Chola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theorem on the orders of orbits of a finite permutation group</atitle><jtitle>International journal of mathematical education in science and technology</jtitle><date>1990-03-01</date><risdate>1990</risdate><volume>21</volume><issue>2</issue><spage>309</spage><epage>310</epage><pages>309-310</pages><issn>0020-739X</issn><eissn>1464-5211</eissn><abstract>In this paper we give a proof of the following theorem. Let G be a permutation group on a finite set N. Then the order of G is odd if and only if the degrees of all transitive constituents of G and the degrees of all transitive constituents of each G a (a?N) are odd. The method we devised in proving the above theorem led to an important generalization.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/0020739900210219</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-739X
ispartof International journal of mathematical education in science and technology, 1990-03, Vol.21 (2), p.309-310
issn 0020-739X
1464-5211
language eng
recordid cdi_crossref_primary_10_1080_0020739900210219
source Taylor & Francis
title A theorem on the orders of orbits of a finite permutation group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theorem%20on%20the%20orders%20of%20orbits%20of%20a%20finite%20permutation%20group&rft.jtitle=International%20journal%20of%20mathematical%20education%20in%20science%20and%20technology&rft.au=Nyondo%E2%80%A0,%20Andrew%20Chola&rft.date=1990-03-01&rft.volume=21&rft.issue=2&rft.spage=309&rft.epage=310&rft.pages=309-310&rft.issn=0020-739X&rft.eissn=1464-5211&rft_id=info:doi/10.1080/0020739900210219&rft_dat=%3Ccrossref_infor%3E10_1080_0020739900210219%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true