Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification

This paper describes a study related to the testing and validation of a neural-network based approach for the problem of actuator failure detection and identification following battle damage to an aircraft control surface. Online learning neural architectures, trained with the Extended Back-Propagat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control 1996-02, Vol.63 (3), p.433-455
Hauptverfasser: NAPOLITANO, MARCELLO R., CASDORPH, VAN, NEPPACH, CHARLES, NAYLOR, STEVE, INNOCENTI, MARIO, SILVESTRI, GIOVANNI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 3
container_start_page 433
container_title International journal of control
container_volume 63
creator NAPOLITANO, MARCELLO R.
CASDORPH, VAN
NEPPACH, CHARLES
NAYLOR, STEVE
INNOCENTI, MARIO
SILVESTRI, GIOVANNI
description This paper describes a study related to the testing and validation of a neural-network based approach for the problem of actuator failure detection and identification following battle damage to an aircraft control surface. Online learning neural architectures, trained with the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in the presence of sensor noise. In addition, a parametric study has been conducted that addresses the selection of 'near optimal' neural architectures for online state estimation purposes. The Failure Detect-ability/False Alarm Rate ratio problem has also been considered in this study. The testing of the approach is illustrated through typical highly nonlinear dynamic simulations of a high performance aircraft.
doi_str_mv 10.1080/00207179608921851
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207179608921851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3026025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d33b2d3b3e06570323d592f5f8bd617b6ce2ea84a381113ba730ce7403ae4633</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKs_wFsOXlcnmSa7BS9SfEGhl96X2SSrkTRbki3Sf--2q17EU4bM982LsWsBtwIquAOQUIpyrqGaS1EpccImArUuVCXhlE0O-eIAnLOLnD8ABKpKTNhuFYOPjgdHKfr4xqPbJQqcknn3vTP9LrnMKVpuUpdzYbqUXKDed3H4pbDPPvO2S5wGlPohaMmHQeLWHfSRs9xbF3vfenNUL9lZSyG7q-93ytZPj-vFS7FcPb8uHpaFQan6wiI20mKDDrQqASVaNZetaqvGalE22jjpqJoRVkIIbKhEMK6cAZKbacQpE2PZ4-zJtfU2-Q2lfS2gPpyt_nO2wbkZnS1lQ6FNFI3PvyKC1CDVgN2PmI_D9hv67FKwdU_70KUfB__v8gVWvYH_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>NAPOLITANO, MARCELLO R. ; CASDORPH, VAN ; NEPPACH, CHARLES ; NAYLOR, STEVE ; INNOCENTI, MARIO ; SILVESTRI, GIOVANNI</creator><creatorcontrib>NAPOLITANO, MARCELLO R. ; CASDORPH, VAN ; NEPPACH, CHARLES ; NAYLOR, STEVE ; INNOCENTI, MARIO ; SILVESTRI, GIOVANNI</creatorcontrib><description>This paper describes a study related to the testing and validation of a neural-network based approach for the problem of actuator failure detection and identification following battle damage to an aircraft control surface. Online learning neural architectures, trained with the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in the presence of sensor noise. In addition, a parametric study has been conducted that addresses the selection of 'near optimal' neural architectures for online state estimation purposes. The Failure Detect-ability/False Alarm Rate ratio problem has also been considered in this study. The testing of the approach is illustrated through typical highly nonlinear dynamic simulations of a high performance aircraft.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207179608921851</identifier><identifier>CODEN: IJCOAZ</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology</subject><ispartof>International journal of control, 1996-02, Vol.63 (3), p.433-455</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d33b2d3b3e06570323d592f5f8bd617b6ce2ea84a381113ba730ce7403ae4633</citedby><cites>FETCH-LOGICAL-c325t-d33b2d3b3e06570323d592f5f8bd617b6ce2ea84a381113ba730ce7403ae4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207179608921851$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207179608921851$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,59636,60425</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3026025$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NAPOLITANO, MARCELLO R.</creatorcontrib><creatorcontrib>CASDORPH, VAN</creatorcontrib><creatorcontrib>NEPPACH, CHARLES</creatorcontrib><creatorcontrib>NAYLOR, STEVE</creatorcontrib><creatorcontrib>INNOCENTI, MARIO</creatorcontrib><creatorcontrib>SILVESTRI, GIOVANNI</creatorcontrib><title>Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification</title><title>International journal of control</title><description>This paper describes a study related to the testing and validation of a neural-network based approach for the problem of actuator failure detection and identification following battle damage to an aircraft control surface. Online learning neural architectures, trained with the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in the presence of sensor noise. In addition, a parametric study has been conducted that addresses the selection of 'near optimal' neural architectures for online state estimation purposes. The Failure Detect-ability/False Alarm Rate ratio problem has also been considered in this study. The testing of the approach is illustrated through typical highly nonlinear dynamic simulations of a high performance aircraft.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKs_wFsOXlcnmSa7BS9SfEGhl96X2SSrkTRbki3Sf--2q17EU4bM982LsWsBtwIquAOQUIpyrqGaS1EpccImArUuVCXhlE0O-eIAnLOLnD8ABKpKTNhuFYOPjgdHKfr4xqPbJQqcknn3vTP9LrnMKVpuUpdzYbqUXKDed3H4pbDPPvO2S5wGlPohaMmHQeLWHfSRs9xbF3vfenNUL9lZSyG7q-93ytZPj-vFS7FcPb8uHpaFQan6wiI20mKDDrQqASVaNZetaqvGalE22jjpqJoRVkIIbKhEMK6cAZKbacQpE2PZ4-zJtfU2-Q2lfS2gPpyt_nO2wbkZnS1lQ6FNFI3PvyKC1CDVgN2PmI_D9hv67FKwdU_70KUfB__v8gVWvYH_</recordid><startdate>19960201</startdate><enddate>19960201</enddate><creator>NAPOLITANO, MARCELLO R.</creator><creator>CASDORPH, VAN</creator><creator>NEPPACH, CHARLES</creator><creator>NAYLOR, STEVE</creator><creator>INNOCENTI, MARIO</creator><creator>SILVESTRI, GIOVANNI</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19960201</creationdate><title>Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification</title><author>NAPOLITANO, MARCELLO R. ; CASDORPH, VAN ; NEPPACH, CHARLES ; NAYLOR, STEVE ; INNOCENTI, MARIO ; SILVESTRI, GIOVANNI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d33b2d3b3e06570323d592f5f8bd617b6ce2ea84a381113ba730ce7403ae4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NAPOLITANO, MARCELLO R.</creatorcontrib><creatorcontrib>CASDORPH, VAN</creatorcontrib><creatorcontrib>NEPPACH, CHARLES</creatorcontrib><creatorcontrib>NAYLOR, STEVE</creatorcontrib><creatorcontrib>INNOCENTI, MARIO</creatorcontrib><creatorcontrib>SILVESTRI, GIOVANNI</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NAPOLITANO, MARCELLO R.</au><au>CASDORPH, VAN</au><au>NEPPACH, CHARLES</au><au>NAYLOR, STEVE</au><au>INNOCENTI, MARIO</au><au>SILVESTRI, GIOVANNI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification</atitle><jtitle>International journal of control</jtitle><date>1996-02-01</date><risdate>1996</risdate><volume>63</volume><issue>3</issue><spage>433</spage><epage>455</epage><pages>433-455</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><coden>IJCOAZ</coden><abstract>This paper describes a study related to the testing and validation of a neural-network based approach for the problem of actuator failure detection and identification following battle damage to an aircraft control surface. Online learning neural architectures, trained with the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in the presence of sensor noise. In addition, a parametric study has been conducted that addresses the selection of 'near optimal' neural architectures for online state estimation purposes. The Failure Detect-ability/False Alarm Rate ratio problem has also been considered in this study. The testing of the approach is illustrated through typical highly nonlinear dynamic simulations of a high performance aircraft.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207179608921851</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7179
ispartof International journal of control, 1996-02, Vol.63 (3), p.433-455
issn 0020-7179
1366-5820
language eng
recordid cdi_crossref_primary_10_1080_00207179608921851
source Taylor & Francis:Master (3349 titles)
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
title Online learning neural architectures and cross-correlation analysis for actuator failure detection and identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A15%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20learning%20neural%20architectures%20and%20cross-correlation%20analysis%20for%20actuator%20failure%20detection%20and%20identification&rft.jtitle=International%20journal%20of%20control&rft.au=NAPOLITANO,%20MARCELLO%20R.&rft.date=1996-02-01&rft.volume=63&rft.issue=3&rft.spage=433&rft.epage=455&rft.pages=433-455&rft.issn=0020-7179&rft.eissn=1366-5820&rft.coden=IJCOAZ&rft_id=info:doi/10.1080/00207179608921851&rft_dat=%3Cpascalfrancis_cross%3E3026025%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true