Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints

An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control 2010-03, Vol.83 (3), p.642-650
Hauptverfasser: Yan, Wei, Li, Shurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 650
container_issue 3
container_start_page 642
container_title International journal of control
container_volume 83
creator Yan, Wei
Li, Shurong
description An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The corresponding stochastic Hamilton-Jacobi-Bellman equation of the problem with linear and nonlinear constraints is derived. Numerical algorithms are presented for finding the optimal solution in this article. Finally, a computational experiment is to illustrate the proposed methods by comparing with M-V portfolio problem which does not have any constraints.
doi_str_mv 10.1080/00207170903367284
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207170903367284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287404781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-7c193d8f03d7952845a1e7bbe73e7645e438d4bb4f3c3d33b42a42fe895c90843</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_wN0guBxNJp8DbqT4BUU3uh4ymQRTMklNMtb-e6dW3RRxlcU75768C8ApghcICngJYQU54rCGGDNeCbIHJggzVlJRwX0w2czLEagPwVFKCwgRpgJNQPs49DpaJV2RghuyDb4IplDBZ-uHMKQy214XvZa-fJfRSq90sQwxm-BsKJJ2Wn1JK5tfCx-8s17LuAlIOUrrczoGB0a6pE--3yl4ub15nt2X86e7h9n1vFSY0lxyhWrcCQNxx2s6XkAl0rxtNceaM0I1waIjbUsMVrjDuCWVJJXRoqaqhoLgKTjb5i5jeBt0ys0iDNGPKxtBGUKc1RsIbSEVQ0pRm2YZbS_jukGw2TTZ7DQ5OuffwTKNRZk4lmDTr1hVhBHG6cjxLWe9CbGXqxBd12S5diH-SDvpTf7Io3n1r4n__uAnlBKZuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856117694</pqid></control><display><type>article</type><title>Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints</title><source>Taylor &amp; Francis</source><creator>Yan, Wei ; Li, Shurong</creator><creatorcontrib>Yan, Wei ; Li, Shurong</creatorcontrib><description>An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The corresponding stochastic Hamilton-Jacobi-Bellman equation of the problem with linear and nonlinear constraints is derived. Numerical algorithms are presented for finding the optimal solution in this article. Finally, a computational experiment is to illustrate the proposed methods by comparing with M-V portfolio problem which does not have any constraints.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207170903367284</identifier><identifier>CODEN: IJCOAZ</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Exact sciences and technology ; HJB equation ; mean-variance criterion ; numerical method ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Poisson process ; Portfolio theory ; Studies</subject><ispartof>International journal of control, 2010-03, Vol.83 (3), p.642-650</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Ltd. Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-7c193d8f03d7952845a1e7bbe73e7645e438d4bb4f3c3d33b42a42fe895c90843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207170903367284$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207170903367284$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22464675$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Li, Shurong</creatorcontrib><title>Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints</title><title>International journal of control</title><description>An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The corresponding stochastic Hamilton-Jacobi-Bellman equation of the problem with linear and nonlinear constraints is derived. Numerical algorithms are presented for finding the optimal solution in this article. Finally, a computational experiment is to illustrate the proposed methods by comparing with M-V portfolio problem which does not have any constraints.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>HJB equation</subject><subject>mean-variance criterion</subject><subject>numerical method</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Poisson process</subject><subject>Portfolio theory</subject><subject>Studies</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_wN0guBxNJp8DbqT4BUU3uh4ymQRTMklNMtb-e6dW3RRxlcU75768C8ApghcICngJYQU54rCGGDNeCbIHJggzVlJRwX0w2czLEagPwVFKCwgRpgJNQPs49DpaJV2RghuyDb4IplDBZ-uHMKQy214XvZa-fJfRSq90sQwxm-BsKJJ2Wn1JK5tfCx-8s17LuAlIOUrrczoGB0a6pE--3yl4ub15nt2X86e7h9n1vFSY0lxyhWrcCQNxx2s6XkAl0rxtNceaM0I1waIjbUsMVrjDuCWVJJXRoqaqhoLgKTjb5i5jeBt0ys0iDNGPKxtBGUKc1RsIbSEVQ0pRm2YZbS_jukGw2TTZ7DQ5OuffwTKNRZk4lmDTr1hVhBHG6cjxLWe9CbGXqxBd12S5diH-SDvpTf7Io3n1r4n__uAnlBKZuQ</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Yan, Wei</creator><creator>Li, Shurong</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints</title><author>Yan, Wei ; Li, Shurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-7c193d8f03d7952845a1e7bbe73e7645e438d4bb4f3c3d33b42a42fe895c90843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>HJB equation</topic><topic>mean-variance criterion</topic><topic>numerical method</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Poisson process</topic><topic>Portfolio theory</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wei</creatorcontrib><creatorcontrib>Li, Shurong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wei</au><au>Li, Shurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints</atitle><jtitle>International journal of control</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>83</volume><issue>3</issue><spage>642</spage><epage>650</epage><pages>642-650</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><coden>IJCOAZ</coden><abstract>An investment problem is considered with dynamic mean-variance (M-V) portfolio criterion under discontinuous prices described by jump-diffusion processes. Some investment strategies are restricted in the study. This M-V portfolio with restrictions can lead to a stochastic optimal control model. The corresponding stochastic Hamilton-Jacobi-Bellman equation of the problem with linear and nonlinear constraints is derived. Numerical algorithms are presented for finding the optimal solution in this article. Finally, a computational experiment is to illustrate the proposed methods by comparing with M-V portfolio problem which does not have any constraints.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207170903367284</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7179
ispartof International journal of control, 2010-03, Vol.83 (3), p.642-650
issn 0020-7179
1366-5820
language eng
recordid cdi_crossref_primary_10_1080_00207170903367284
source Taylor & Francis
subjects Applied sciences
Exact sciences and technology
HJB equation
mean-variance criterion
numerical method
Operational research and scientific management
Operational research. Management science
Operations research
Poisson process
Portfolio theory
Studies
title Numerical solution of continuous-time mean-variance portfolio selection with nonlinear constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A30%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20continuous-time%20mean-variance%20portfolio%20selection%20with%20nonlinear%20constraints&rft.jtitle=International%20journal%20of%20control&rft.au=Yan,%20Wei&rft.date=2010-03-01&rft.volume=83&rft.issue=3&rft.spage=642&rft.epage=650&rft.pages=642-650&rft.issn=0020-7179&rft.eissn=1366-5820&rft.coden=IJCOAZ&rft_id=info:doi/10.1080/00207170903367284&rft_dat=%3Cproquest_cross%3E2287404781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856117694&rft_id=info:pmid/&rfr_iscdi=true