Solving systems of nonlinear equations In using a rotating hyperplane in

A procedure which accelerates the convergence of iterative methods for the numerical solution of systems of nonlinear algebraic and/or transcendental equations in is introduced. This procedure uses a rotating hyperplane in , whose rotation axis depends on the current approximation n-1 of components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer mathematics 1990-01, Vol.35 (1-4), p.133-151
Hauptverfasser: Grapsa, T.N., Vrahatis, M.N., Bountis, T.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1-4
container_start_page 133
container_title International journal of computer mathematics
container_volume 35
creator Grapsa, T.N.
Vrahatis, M.N.
Bountis, T.C.
description A procedure which accelerates the convergence of iterative methods for the numerical solution of systems of nonlinear algebraic and/or transcendental equations in is introduced. This procedure uses a rotating hyperplane in , whose rotation axis depends on the current approximation n-1 of components of the solution. The proposed procedure is applied here on the traditional Newton's method and on a recently proposed "dimension-reducing" method [5] which incorporates the advantages of nonlinear SOR and Newton's algorithms. In this way, two new modified schemes for solving nonlinear systems are correspondingly obtained. For both of these schemes proofs of convergence are given and numerical applications are presented.
doi_str_mv 10.1080/00207169008803894
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207169008803894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00207169008803894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1434-2b341452ea5528ffab9a2b580cee25278dcb699255b73a9abee7bdcd84b658663</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHa-QGDsxI4tsUEV0EqVWADraJzYYJTaxU5BuT2p2h1iNaP5783iE3LN4IaBglsADjWTGkApKJWuTsiMAdcFcClOyWyfFxMA5-Qi50-YOF3LGVm-xP7bh3eaxzzYTabR0RBD74PFRO3XDgcfQ6arQHd5zyFNcZiO0_oxbm3a9hgs9eGSnDnss706zjl5e3x4XSyL9fPTanG_LlpWlVXBTVmxSnCLQnDlHBqN3AgFrbVc8Fp1rZFacyFMXaJGY21turZTlZFCSVnOCTv8bVPMOVnXbJPfYBobBs2-iuZPFZNzd3B8cDFt8CemvmsGHPuYXMLQ-tyU_-u_HXVkgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving systems of nonlinear equations In using a rotating hyperplane in</title><source>Taylor &amp; Francis</source><creator>Grapsa, T.N. ; Vrahatis, M.N. ; Bountis, T.C.</creator><creatorcontrib>Grapsa, T.N. ; Vrahatis, M.N. ; Bountis, T.C.</creatorcontrib><description>A procedure which accelerates the convergence of iterative methods for the numerical solution of systems of nonlinear algebraic and/or transcendental equations in is introduced. This procedure uses a rotating hyperplane in , whose rotation axis depends on the current approximation n-1 of components of the solution. The proposed procedure is applied here on the traditional Newton's method and on a recently proposed "dimension-reducing" method [5] which incorporates the advantages of nonlinear SOR and Newton's algorithms. In this way, two new modified schemes for solving nonlinear systems are correspondingly obtained. For both of these schemes proofs of convergence are given and numerical applications are presented.</description><identifier>ISSN: 0020-7160</identifier><identifier>EISSN: 1029-0265</identifier><identifier>DOI: 10.1080/00207169008803894</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>bisection method ; dimension-reducing method ; G.1.5 ; implicit function theorem ; imprecise function values ; m-step SOR-Newton ; Newton's method ; nonlinear equations ; nonlinear SOR ; numerical solution ; quadratic convergence ; reduction to one-dimensional equations ; zeros</subject><ispartof>International journal of computer mathematics, 1990-01, Vol.35 (1-4), p.133-151</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1990</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1434-2b341452ea5528ffab9a2b580cee25278dcb699255b73a9abee7bdcd84b658663</citedby><cites>FETCH-LOGICAL-c1434-2b341452ea5528ffab9a2b580cee25278dcb699255b73a9abee7bdcd84b658663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207169008803894$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207169008803894$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Grapsa, T.N.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><creatorcontrib>Bountis, T.C.</creatorcontrib><title>Solving systems of nonlinear equations In using a rotating hyperplane in</title><title>International journal of computer mathematics</title><description>A procedure which accelerates the convergence of iterative methods for the numerical solution of systems of nonlinear algebraic and/or transcendental equations in is introduced. This procedure uses a rotating hyperplane in , whose rotation axis depends on the current approximation n-1 of components of the solution. The proposed procedure is applied here on the traditional Newton's method and on a recently proposed "dimension-reducing" method [5] which incorporates the advantages of nonlinear SOR and Newton's algorithms. In this way, two new modified schemes for solving nonlinear systems are correspondingly obtained. For both of these schemes proofs of convergence are given and numerical applications are presented.</description><subject>bisection method</subject><subject>dimension-reducing method</subject><subject>G.1.5</subject><subject>implicit function theorem</subject><subject>imprecise function values</subject><subject>m-step SOR-Newton</subject><subject>Newton's method</subject><subject>nonlinear equations</subject><subject>nonlinear SOR</subject><subject>numerical solution</subject><subject>quadratic convergence</subject><subject>reduction to one-dimensional equations</subject><subject>zeros</subject><issn>0020-7160</issn><issn>1029-0265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqVwAHa-QGDsxI4tsUEV0EqVWADraJzYYJTaxU5BuT2p2h1iNaP5783iE3LN4IaBglsADjWTGkApKJWuTsiMAdcFcClOyWyfFxMA5-Qi50-YOF3LGVm-xP7bh3eaxzzYTabR0RBD74PFRO3XDgcfQ6arQHd5zyFNcZiO0_oxbm3a9hgs9eGSnDnss706zjl5e3x4XSyL9fPTanG_LlpWlVXBTVmxSnCLQnDlHBqN3AgFrbVc8Fp1rZFacyFMXaJGY21turZTlZFCSVnOCTv8bVPMOVnXbJPfYBobBs2-iuZPFZNzd3B8cDFt8CemvmsGHPuYXMLQ-tyU_-u_HXVkgQ</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Grapsa, T.N.</creator><creator>Vrahatis, M.N.</creator><creator>Bountis, T.C.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19900101</creationdate><title>Solving systems of nonlinear equations In using a rotating hyperplane in</title><author>Grapsa, T.N. ; Vrahatis, M.N. ; Bountis, T.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1434-2b341452ea5528ffab9a2b580cee25278dcb699255b73a9abee7bdcd84b658663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>bisection method</topic><topic>dimension-reducing method</topic><topic>G.1.5</topic><topic>implicit function theorem</topic><topic>imprecise function values</topic><topic>m-step SOR-Newton</topic><topic>Newton's method</topic><topic>nonlinear equations</topic><topic>nonlinear SOR</topic><topic>numerical solution</topic><topic>quadratic convergence</topic><topic>reduction to one-dimensional equations</topic><topic>zeros</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grapsa, T.N.</creatorcontrib><creatorcontrib>Vrahatis, M.N.</creatorcontrib><creatorcontrib>Bountis, T.C.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of computer mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grapsa, T.N.</au><au>Vrahatis, M.N.</au><au>Bountis, T.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving systems of nonlinear equations In using a rotating hyperplane in</atitle><jtitle>International journal of computer mathematics</jtitle><date>1990-01-01</date><risdate>1990</risdate><volume>35</volume><issue>1-4</issue><spage>133</spage><epage>151</epage><pages>133-151</pages><issn>0020-7160</issn><eissn>1029-0265</eissn><abstract>A procedure which accelerates the convergence of iterative methods for the numerical solution of systems of nonlinear algebraic and/or transcendental equations in is introduced. This procedure uses a rotating hyperplane in , whose rotation axis depends on the current approximation n-1 of components of the solution. The proposed procedure is applied here on the traditional Newton's method and on a recently proposed "dimension-reducing" method [5] which incorporates the advantages of nonlinear SOR and Newton's algorithms. In this way, two new modified schemes for solving nonlinear systems are correspondingly obtained. For both of these schemes proofs of convergence are given and numerical applications are presented.</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/00207169008803894</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7160
ispartof International journal of computer mathematics, 1990-01, Vol.35 (1-4), p.133-151
issn 0020-7160
1029-0265
language eng
recordid cdi_crossref_primary_10_1080_00207169008803894
source Taylor & Francis
subjects bisection method
dimension-reducing method
G.1.5
implicit function theorem
imprecise function values
m-step SOR-Newton
Newton's method
nonlinear equations
nonlinear SOR
numerical solution
quadratic convergence
reduction to one-dimensional equations
zeros
title Solving systems of nonlinear equations In using a rotating hyperplane in
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20systems%20of%20nonlinear%20equations%20In%20using%20a%20rotating%20hyperplane%20in&rft.jtitle=International%20journal%20of%20computer%20mathematics&rft.au=Grapsa,%20T.N.&rft.date=1990-01-01&rft.volume=35&rft.issue=1-4&rft.spage=133&rft.epage=151&rft.pages=133-151&rft.issn=0020-7160&rft.eissn=1029-0265&rft_id=info:doi/10.1080/00207169008803894&rft_dat=%3Ccrossref_infor%3E10_1080_00207169008803894%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true