The impact of liquidity on portfolio value-at-risk forecasts

Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied economics 2020-01, Vol.52 (3), p.242-259
Hauptverfasser: Hung, Jui-Cheng, Su, Jung-Bin, Chang, Matthew C., Wang, Yi-Hsien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 3
container_start_page 242
container_title Applied economics
container_volume 52
creator Hung, Jui-Cheng
Su, Jung-Bin
Chang, Matthew C.
Wang, Yi-Hsien
description Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels. The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.
doi_str_mv 10.1080/00036846.2019.1644442
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036846_2019_1644442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322613364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43Zmvpg14oQy_YODNvA5ZmmBm13RJquzfm9KJd-bmEHie83JeAK4xWmBUo1uEEOU14wuCsFhgzvIjJ2CGGecFIzU9BbORKUboHFzEuM1fTGg1A3frDwPdrlc6QW9h6_aDa1w6QN_B3odkfes8_FLtYAqViuDiJ7Q-GK1iipfgzKo2mqvjnIP3p8f18qVYvT2_Lh9Whc7pqVAEa2aUQsKUDd_w0oqKC6MRtwIZJQw22iKmjG6EaPSmaVSFLaqs2ChUoprOwc20tw9-P5iY5NYPocuRklBCOKaUs0yVE6WDjzEYK_vgdiocJEZyLEr-FiXHouSxqOzByTPady7-WVwwInBNUEbuJ8R1-fid-vahbWRSh9YHG1Sns0b_T_kBTbd6Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322613364</pqid></control><display><type>article</type><title>The impact of liquidity on portfolio value-at-risk forecasts</title><source>Business Source Complete</source><creator>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</creator><creatorcontrib>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</creatorcontrib><description>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels. The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2019.1644442</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>accuracy and efficiency ; Capital requirements ; Economic analysis ; Economic crisis ; Economic theory ; Forecasts ; History ; Ignorance ; illiquidity ; Liquidity ; multivariate GARCH-t and GJR-GARCH-t models ; Portfolio management ; Portfolios ; Property ; Risk ; Value-at-risk</subject><ispartof>Applied economics, 2020-01, Vol.52 (3), p.242-259</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</citedby><cites>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</cites><orcidid>0000-0003-3445-6906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Hung, Jui-Cheng</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><creatorcontrib>Chang, Matthew C.</creatorcontrib><creatorcontrib>Wang, Yi-Hsien</creatorcontrib><title>The impact of liquidity on portfolio value-at-risk forecasts</title><title>Applied economics</title><description>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels. The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</description><subject>accuracy and efficiency</subject><subject>Capital requirements</subject><subject>Economic analysis</subject><subject>Economic crisis</subject><subject>Economic theory</subject><subject>Forecasts</subject><subject>History</subject><subject>Ignorance</subject><subject>illiquidity</subject><subject>Liquidity</subject><subject>multivariate GARCH-t and GJR-GARCH-t models</subject><subject>Portfolio management</subject><subject>Portfolios</subject><subject>Property</subject><subject>Risk</subject><subject>Value-at-risk</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43Zmvpg14oQy_YODNvA5ZmmBm13RJquzfm9KJd-bmEHie83JeAK4xWmBUo1uEEOU14wuCsFhgzvIjJ2CGGecFIzU9BbORKUboHFzEuM1fTGg1A3frDwPdrlc6QW9h6_aDa1w6QN_B3odkfes8_FLtYAqViuDiJ7Q-GK1iipfgzKo2mqvjnIP3p8f18qVYvT2_Lh9Whc7pqVAEa2aUQsKUDd_w0oqKC6MRtwIZJQw22iKmjG6EaPSmaVSFLaqs2ChUoprOwc20tw9-P5iY5NYPocuRklBCOKaUs0yVE6WDjzEYK_vgdiocJEZyLEr-FiXHouSxqOzByTPady7-WVwwInBNUEbuJ8R1-fid-vahbWRSh9YHG1Sns0b_T_kBTbd6Gg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hung, Jui-Cheng</creator><creator>Su, Jung-Bin</creator><creator>Chang, Matthew C.</creator><creator>Wang, Yi-Hsien</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-3445-6906</orcidid></search><sort><creationdate>20200101</creationdate><title>The impact of liquidity on portfolio value-at-risk forecasts</title><author>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accuracy and efficiency</topic><topic>Capital requirements</topic><topic>Economic analysis</topic><topic>Economic crisis</topic><topic>Economic theory</topic><topic>Forecasts</topic><topic>History</topic><topic>Ignorance</topic><topic>illiquidity</topic><topic>Liquidity</topic><topic>multivariate GARCH-t and GJR-GARCH-t models</topic><topic>Portfolio management</topic><topic>Portfolios</topic><topic>Property</topic><topic>Risk</topic><topic>Value-at-risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Jui-Cheng</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><creatorcontrib>Chang, Matthew C.</creatorcontrib><creatorcontrib>Wang, Yi-Hsien</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Jui-Cheng</au><au>Su, Jung-Bin</au><au>Chang, Matthew C.</au><au>Wang, Yi-Hsien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of liquidity on portfolio value-at-risk forecasts</atitle><jtitle>Applied economics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>242</spage><epage>259</epage><pages>242-259</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels. The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2019.1644442</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3445-6906</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6846
ispartof Applied economics, 2020-01, Vol.52 (3), p.242-259
issn 0003-6846
1466-4283
language eng
recordid cdi_crossref_primary_10_1080_00036846_2019_1644442
source Business Source Complete
subjects accuracy and efficiency
Capital requirements
Economic analysis
Economic crisis
Economic theory
Forecasts
History
Ignorance
illiquidity
Liquidity
multivariate GARCH-t and GJR-GARCH-t models
Portfolio management
Portfolios
Property
Risk
Value-at-risk
title The impact of liquidity on portfolio value-at-risk forecasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20liquidity%20on%20portfolio%20value-at-risk%20forecasts&rft.jtitle=Applied%20economics&rft.au=Hung,%20Jui-Cheng&rft.date=2020-01-01&rft.volume=52&rft.issue=3&rft.spage=242&rft.epage=259&rft.pages=242-259&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2019.1644442&rft_dat=%3Cproquest_cross%3E2322613364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322613364&rft_id=info:pmid/&rfr_iscdi=true