The impact of liquidity on portfolio value-at-risk forecasts
Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a po...
Gespeichert in:
Veröffentlicht in: | Applied economics 2020-01, Vol.52 (3), p.242-259 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 259 |
---|---|
container_issue | 3 |
container_start_page | 242 |
container_title | Applied economics |
container_volume | 52 |
creator | Hung, Jui-Cheng Su, Jung-Bin Chang, Matthew C. Wang, Yi-Hsien |
description | Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels.
The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements. |
doi_str_mv | 10.1080/00036846.2019.1644442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036846_2019_1644442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2322613364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43Zmvpg14oQy_YODNvA5ZmmBm13RJquzfm9KJd-bmEHie83JeAK4xWmBUo1uEEOU14wuCsFhgzvIjJ2CGGecFIzU9BbORKUboHFzEuM1fTGg1A3frDwPdrlc6QW9h6_aDa1w6QN_B3odkfes8_FLtYAqViuDiJ7Q-GK1iipfgzKo2mqvjnIP3p8f18qVYvT2_Lh9Whc7pqVAEa2aUQsKUDd_w0oqKC6MRtwIZJQw22iKmjG6EaPSmaVSFLaqs2ChUoprOwc20tw9-P5iY5NYPocuRklBCOKaUs0yVE6WDjzEYK_vgdiocJEZyLEr-FiXHouSxqOzByTPady7-WVwwInBNUEbuJ8R1-fid-vahbWRSh9YHG1Sns0b_T_kBTbd6Gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2322613364</pqid></control><display><type>article</type><title>The impact of liquidity on portfolio value-at-risk forecasts</title><source>Business Source Complete</source><creator>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</creator><creatorcontrib>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</creatorcontrib><description>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels.
The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2019.1644442</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>accuracy and efficiency ; Capital requirements ; Economic analysis ; Economic crisis ; Economic theory ; Forecasts ; History ; Ignorance ; illiquidity ; Liquidity ; multivariate GARCH-t and GJR-GARCH-t models ; Portfolio management ; Portfolios ; Property ; Risk ; Value-at-risk</subject><ispartof>Applied economics, 2020-01, Vol.52 (3), p.242-259</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</citedby><cites>FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</cites><orcidid>0000-0003-3445-6906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Hung, Jui-Cheng</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><creatorcontrib>Chang, Matthew C.</creatorcontrib><creatorcontrib>Wang, Yi-Hsien</creatorcontrib><title>The impact of liquidity on portfolio value-at-risk forecasts</title><title>Applied economics</title><description>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels.
The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</description><subject>accuracy and efficiency</subject><subject>Capital requirements</subject><subject>Economic analysis</subject><subject>Economic crisis</subject><subject>Economic theory</subject><subject>Forecasts</subject><subject>History</subject><subject>Ignorance</subject><subject>illiquidity</subject><subject>Liquidity</subject><subject>multivariate GARCH-t and GJR-GARCH-t models</subject><subject>Portfolio management</subject><subject>Portfolios</subject><subject>Property</subject><subject>Risk</subject><subject>Value-at-risk</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43Zmvpg14oQy_YODNvA5ZmmBm13RJquzfm9KJd-bmEHie83JeAK4xWmBUo1uEEOU14wuCsFhgzvIjJ2CGGecFIzU9BbORKUboHFzEuM1fTGg1A3frDwPdrlc6QW9h6_aDa1w6QN_B3odkfes8_FLtYAqViuDiJ7Q-GK1iipfgzKo2mqvjnIP3p8f18qVYvT2_Lh9Whc7pqVAEa2aUQsKUDd_w0oqKC6MRtwIZJQw22iKmjG6EaPSmaVSFLaqs2ChUoprOwc20tw9-P5iY5NYPocuRklBCOKaUs0yVE6WDjzEYK_vgdiocJEZyLEr-FiXHouSxqOzByTPady7-WVwwInBNUEbuJ8R1-fid-vahbWRSh9YHG1Sns0b_T_kBTbd6Gg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Hung, Jui-Cheng</creator><creator>Su, Jung-Bin</creator><creator>Chang, Matthew C.</creator><creator>Wang, Yi-Hsien</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0003-3445-6906</orcidid></search><sort><creationdate>20200101</creationdate><title>The impact of liquidity on portfolio value-at-risk forecasts</title><author>Hung, Jui-Cheng ; Su, Jung-Bin ; Chang, Matthew C. ; Wang, Yi-Hsien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a21c4eaa09e5d6b65f9769ec06f90ea9e1ecf04aecd99dcbdda71f07f9ba05083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>accuracy and efficiency</topic><topic>Capital requirements</topic><topic>Economic analysis</topic><topic>Economic crisis</topic><topic>Economic theory</topic><topic>Forecasts</topic><topic>History</topic><topic>Ignorance</topic><topic>illiquidity</topic><topic>Liquidity</topic><topic>multivariate GARCH-t and GJR-GARCH-t models</topic><topic>Portfolio management</topic><topic>Portfolios</topic><topic>Property</topic><topic>Risk</topic><topic>Value-at-risk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Jui-Cheng</creatorcontrib><creatorcontrib>Su, Jung-Bin</creatorcontrib><creatorcontrib>Chang, Matthew C.</creatorcontrib><creatorcontrib>Wang, Yi-Hsien</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Jui-Cheng</au><au>Su, Jung-Bin</au><au>Chang, Matthew C.</au><au>Wang, Yi-Hsien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of liquidity on portfolio value-at-risk forecasts</atitle><jtitle>Applied economics</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>52</volume><issue>3</issue><spage>242</spage><epage>259</epage><pages>242-259</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>Historical crisis events have highlighted the insufficiency of Value-at-Risk (VaR) as a measure of market risk because such metric does not take liquidity into account. Unlike previous studies analyzing with only a single asset, we examine the impact of liquidity on computing VaR forecasts from a portfolio level. To this end, we use multivariate GARCH-t and GJR-GARCH-t models, as compared with univariate models, to seize the liquidity property embedded in individual stock returns and evaluate their accuracy and efficiency in computing VaR forecasts for portfolios with different liquidity levels.
The empirical results indicate that computing portfolio VaR forecasts with multivariate models outperform the univariate models for full and subsample periods in terms of accuracy and efficiency evaluations, in particular for less-liquid portfolios. These results suggest the importance of liquidity in computing portfolio VaR forecasts. Ignorance of the impact of liquidity in computing portfolio VaR forecasts might result in inadequate coverage and insufficient market risk capital requirements.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2019.1644442</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3445-6906</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6846 |
ispartof | Applied economics, 2020-01, Vol.52 (3), p.242-259 |
issn | 0003-6846 1466-4283 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00036846_2019_1644442 |
source | Business Source Complete |
subjects | accuracy and efficiency Capital requirements Economic analysis Economic crisis Economic theory Forecasts History Ignorance illiquidity Liquidity multivariate GARCH-t and GJR-GARCH-t models Portfolio management Portfolios Property Risk Value-at-risk |
title | The impact of liquidity on portfolio value-at-risk forecasts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20liquidity%20on%20portfolio%20value-at-risk%20forecasts&rft.jtitle=Applied%20economics&rft.au=Hung,%20Jui-Cheng&rft.date=2020-01-01&rft.volume=52&rft.issue=3&rft.spage=242&rft.epage=259&rft.pages=242-259&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2019.1644442&rft_dat=%3Cproquest_cross%3E2322613364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2322613364&rft_id=info:pmid/&rfr_iscdi=true |