On the stability of linear III-posed problems with a prescribed energy bound

In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis 1997-04, Vol.64 (3-4), p.291-301
1. Verfasser: Lyashenko, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 3-4
container_start_page 291
container_title Applicable analysis
container_volume 64
creator Lyashenko, A.A.
description In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if for any ƒ ∈ H, E,∈ > 0 there exists δ>0 such that for any functions satisfying , j = 1,2 we have H ≤∈ provided ρM(α j ,α)≤ δ , j=1,2. We show that if A α has a complete in H system of eigenvectors, and the eigenvectors and the eigenvalues depend continuously on α ∈ M then the problem is stable at α ∈ M if and only if 0∉σ p: (A α ).
doi_str_mv 10.1080/00036819708840537
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036819708840537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00036819708840537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-e825448af91556a032f69c6e6357bb2da4ae3dfc673a681eede0ed69cb587e7b3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKsP4C4vMJpMJj8FN1L8GSh0o-BuSCY3NjKdlCSi8_am1F0RV5fLOd-9h4PQNSU3lChySwhhQtGFJEo1hDN5gmaUC1Zx0rydotler4qBnqOLlD4IobXiYoZW6xHnDeCUtfGDzxMODg9-BB1x27bVLiSweBeDGWCb8JfPG6zLDqmP3hQJRojvEzbhc7SX6MzpIcHV75yj18eHl-VztVo_tcv7VdXXlOUKVM2bRmm3oJwLTVjtxKIXIBiXxtRWNxqYdb2QTJfIABYI2GIxXEmQhs0RPdztY0gpgut20W91nDpKun0d3VEdhZEHxo8uxK3-CnGwXdbTEKKLeux9Oqa6_J0Lefcvyf5-_APxrHhG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the stability of linear III-posed problems with a prescribed energy bound</title><source>Taylor &amp; Francis Journals Complete</source><creator>Lyashenko, A.A.</creator><creatorcontrib>Lyashenko, A.A.</creatorcontrib><description>In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if for any ƒ ∈ H, E,∈ &gt; 0 there exists δ&gt;0 such that for any functions satisfying , j = 1,2 we have H ≤∈ provided ρM(α j ,α)≤ δ , j=1,2. We show that if A α has a complete in H system of eigenvectors, and the eigenvectors and the eigenvalues depend continuously on α ∈ M then the problem is stable at α ∈ M if and only if 0∉σ p: (A α ).</description><identifier>ISSN: 0003-6811</identifier><identifier>EISSN: 1563-504X</identifier><identifier>DOI: 10.1080/00036819708840537</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers</publisher><subject>A priori energy bound ; Ill-posed problem ; Stability</subject><ispartof>Applicable analysis, 1997-04, Vol.64 (3-4), p.291-301</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c213t-e825448af91556a032f69c6e6357bb2da4ae3dfc673a681eede0ed69cb587e7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00036819708840537$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00036819708840537$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids></links><search><creatorcontrib>Lyashenko, A.A.</creatorcontrib><title>On the stability of linear III-posed problems with a prescribed energy bound</title><title>Applicable analysis</title><description>In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if for any ƒ ∈ H, E,∈ &gt; 0 there exists δ&gt;0 such that for any functions satisfying , j = 1,2 we have H ≤∈ provided ρM(α j ,α)≤ δ , j=1,2. We show that if A α has a complete in H system of eigenvectors, and the eigenvectors and the eigenvalues depend continuously on α ∈ M then the problem is stable at α ∈ M if and only if 0∉σ p: (A α ).</description><subject>A priori energy bound</subject><subject>Ill-posed problem</subject><subject>Stability</subject><issn>0003-6811</issn><issn>1563-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKsP4C4vMJpMJj8FN1L8GSh0o-BuSCY3NjKdlCSi8_am1F0RV5fLOd-9h4PQNSU3lChySwhhQtGFJEo1hDN5gmaUC1Zx0rydotler4qBnqOLlD4IobXiYoZW6xHnDeCUtfGDzxMODg9-BB1x27bVLiSweBeDGWCb8JfPG6zLDqmP3hQJRojvEzbhc7SX6MzpIcHV75yj18eHl-VztVo_tcv7VdXXlOUKVM2bRmm3oJwLTVjtxKIXIBiXxtRWNxqYdb2QTJfIABYI2GIxXEmQhs0RPdztY0gpgut20W91nDpKun0d3VEdhZEHxo8uxK3-CnGwXdbTEKKLeux9Oqa6_J0Lefcvyf5-_APxrHhG</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>Lyashenko, A.A.</creator><general>Gordon and Breach Science Publishers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970401</creationdate><title>On the stability of linear III-posed problems with a prescribed energy bound</title><author>Lyashenko, A.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-e825448af91556a032f69c6e6357bb2da4ae3dfc673a681eede0ed69cb587e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>A priori energy bound</topic><topic>Ill-posed problem</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyashenko, A.A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applicable analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyashenko, A.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability of linear III-posed problems with a prescribed energy bound</atitle><jtitle>Applicable analysis</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>64</volume><issue>3-4</issue><spage>291</spage><epage>301</epage><pages>291-301</pages><issn>0003-6811</issn><eissn>1563-504X</eissn><abstract>In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if for any ƒ ∈ H, E,∈ &gt; 0 there exists δ&gt;0 such that for any functions satisfying , j = 1,2 we have H ≤∈ provided ρM(α j ,α)≤ δ , j=1,2. We show that if A α has a complete in H system of eigenvectors, and the eigenvectors and the eigenvalues depend continuously on α ∈ M then the problem is stable at α ∈ M if and only if 0∉σ p: (A α ).</abstract><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/00036819708840537</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6811
ispartof Applicable analysis, 1997-04, Vol.64 (3-4), p.291-301
issn 0003-6811
1563-504X
language eng
recordid cdi_crossref_primary_10_1080_00036819708840537
source Taylor & Francis Journals Complete
subjects A priori energy bound
Ill-posed problem
Stability
title On the stability of linear III-posed problems with a prescribed energy bound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20of%20linear%20III-posed%20problems%20with%20a%20prescribed%20energy%20bound&rft.jtitle=Applicable%20analysis&rft.au=Lyashenko,%20A.A.&rft.date=1997-04-01&rft.volume=64&rft.issue=3-4&rft.spage=291&rft.epage=301&rft.pages=291-301&rft.issn=0003-6811&rft.eissn=1563-504X&rft_id=info:doi/10.1080/00036819708840537&rft_dat=%3Ccrossref_infor%3E10_1080_00036819708840537%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true