On the stability of linear III-posed problems with a prescribed energy bound
In this paper we study the stability of linear operator equation A α u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A α u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if...
Gespeichert in:
Veröffentlicht in: | Applicable analysis 1997-04, Vol.64 (3-4), p.291-301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the stability of linear operator equation A
α
u = ƒ under assumption of an a priori bound E(u)≤E, where α is a parameter in a metric space M and E(u) is a positive functional. Following[11] the problem A
α
u = ƒ,E(u)≤E is called stable in a Hilbert space H at a point α ∈ M if for any ƒ ∈ H, E,∈ > 0 there exists δ>0 such that for any functions
satisfying
, j = 1,2 we have
H ≤∈ provided ρM(α
j
,α)≤ δ
, j=1,2. We show that if A
α
has a complete in H system of eigenvectors, and the eigenvectors and the eigenvalues depend continuously on α ∈ M then the problem is stable at α ∈ M if and only if 0∉σ
p:
(A
α
). |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036819708840537 |