Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen

In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis 1979-10, Vol.9 (3), p.165-177
Hauptverfasser: Wolf, Rudolf, Wendland, W., Trofimov, V. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 3
container_start_page 165
container_title Applicable analysis
container_volume 9
creator Wolf, Rudolf
Wendland, W.
Trofimov, V. P.
description In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.
doi_str_mv 10.1080/00036817908839265
format Article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036817908839265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00036817908839265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G5eYDSZ_DQBN1L8g4ILFcTNcCeTdFJnkpJJW_o-vokv5gx1J64uh3O-y70HoUuCrwiW-BpjTIUkM4WlpKoQ_AhNCBc055i9H6PJ6OdDgJyis75fYUwKycUErT42MXtJULnWpe-vlNUmZtAuTRXB9boxPts601rQTWNcyrbBZ8Ytjd-ZmEZz0E1oQxfiegzbaOpBd3lYmwgpRLvxn8kFb_w5OrHQ9ubid07R2_3d6_wxXzw_PM1vF7kmjPLcKiK1oFxJChagIhVnMAPF5HBwbRnVdc3kzJjKFiCU4IoRQQpbK82pqRidInLYq2Po-2hsuY6ug7gvCS7Hsso_ZQ3MzYFx3obYwS7Eti4T7Nvhgwheu76k_-M_XolzYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><source>Taylor &amp; Francis Journals Complete</source><creator>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</creator><creatorcontrib>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</creatorcontrib><description>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</description><identifier>ISSN: 0003-6811</identifier><identifier>EISSN: 1563-504X</identifier><identifier>DOI: 10.1080/00036817908839265</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers Ltd</publisher><ispartof>Applicable analysis, 1979-10, Vol.9 (3), p.165-177</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1979</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</citedby><cites>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00036817908839265$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00036817908839265$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids></links><search><creatorcontrib>Wolf, Rudolf</creatorcontrib><creatorcontrib>Wendland, W.</creatorcontrib><creatorcontrib>Trofimov, V. P.</creatorcontrib><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><title>Applicable analysis</title><description>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</description><issn>0003-6811</issn><issn>1563-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4G5eYDSZ_DQBN1L8g4ILFcTNcCeTdFJnkpJJW_o-vokv5gx1J64uh3O-y70HoUuCrwiW-BpjTIUkM4WlpKoQ_AhNCBc055i9H6PJ6OdDgJyis75fYUwKycUErT42MXtJULnWpe-vlNUmZtAuTRXB9boxPts601rQTWNcyrbBZ8Ytjd-ZmEZz0E1oQxfiegzbaOpBd3lYmwgpRLvxn8kFb_w5OrHQ9ubid07R2_3d6_wxXzw_PM1vF7kmjPLcKiK1oFxJChagIhVnMAPF5HBwbRnVdc3kzJjKFiCU4IoRQQpbK82pqRidInLYq2Po-2hsuY6ug7gvCS7Hsso_ZQ3MzYFx3obYwS7Eti4T7Nvhgwheu76k_-M_XolzYw</recordid><startdate>19791001</startdate><enddate>19791001</enddate><creator>Wolf, Rudolf</creator><creator>Wendland, W.</creator><creator>Trofimov, V. P.</creator><general>Gordon and Breach Science Publishers Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19791001</creationdate><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><author>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Rudolf</creatorcontrib><creatorcontrib>Wendland, W.</creatorcontrib><creatorcontrib>Trofimov, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Applicable analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Rudolf</au><au>Wendland, W.</au><au>Trofimov, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</atitle><jtitle>Applicable analysis</jtitle><date>1979-10-01</date><risdate>1979</risdate><volume>9</volume><issue>3</issue><spage>165</spage><epage>177</epage><pages>165-177</pages><issn>0003-6811</issn><eissn>1563-504X</eissn><abstract>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</abstract><pub>Gordon and Breach Science Publishers Ltd</pub><doi>10.1080/00036817908839265</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6811
ispartof Applicable analysis, 1979-10, Vol.9 (3), p.165-177
issn 0003-6811
1563-504X
language eng
recordid cdi_crossref_primary_10_1080_00036817908839265
source Taylor & Francis Journals Complete
title Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zur%20Stabilit%C3%A4t%20der%20algebraischen%20vielfachheit%20von%20eigenwerten%20von%20holomorphen%20fredholm-operatorfunktionen&rft.jtitle=Applicable%20analysis&rft.au=Wolf,%20Rudolf&rft.date=1979-10-01&rft.volume=9&rft.issue=3&rft.spage=165&rft.epage=177&rft.pages=165-177&rft.issn=0003-6811&rft.eissn=1563-504X&rft_id=info:doi/10.1080/00036817908839265&rft_dat=%3Ccrossref_infor%3E10_1080_00036817908839265%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true