Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen
In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebra...
Gespeichert in:
Veröffentlicht in: | Applicable analysis 1979-10, Vol.9 (3), p.165-177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 3 |
container_start_page | 165 |
container_title | Applicable analysis |
container_volume | 9 |
creator | Wolf, Rudolf Wendland, W. Trofimov, V. P. |
description | In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest. |
doi_str_mv | 10.1080/00036817908839265 |
format | Article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036817908839265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00036817908839265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4G5eYDSZ_DQBN1L8g4ILFcTNcCeTdFJnkpJJW_o-vokv5gx1J64uh3O-y70HoUuCrwiW-BpjTIUkM4WlpKoQ_AhNCBc055i9H6PJ6OdDgJyis75fYUwKycUErT42MXtJULnWpe-vlNUmZtAuTRXB9boxPts601rQTWNcyrbBZ8Ytjd-ZmEZz0E1oQxfiegzbaOpBd3lYmwgpRLvxn8kFb_w5OrHQ9ubid07R2_3d6_wxXzw_PM1vF7kmjPLcKiK1oFxJChagIhVnMAPF5HBwbRnVdc3kzJjKFiCU4IoRQQpbK82pqRidInLYq2Po-2hsuY6ug7gvCS7Hsso_ZQ3MzYFx3obYwS7Eti4T7Nvhgwheu76k_-M_XolzYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><source>Taylor & Francis Journals Complete</source><creator>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</creator><creatorcontrib>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</creatorcontrib><description>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</description><identifier>ISSN: 0003-6811</identifier><identifier>EISSN: 1563-504X</identifier><identifier>DOI: 10.1080/00036817908839265</identifier><language>eng</language><publisher>Gordon and Breach Science Publishers Ltd</publisher><ispartof>Applicable analysis, 1979-10, Vol.9 (3), p.165-177</ispartof><rights>Copyright Taylor & Francis Group, LLC 1979</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</citedby><cites>FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00036817908839265$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00036817908839265$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,59626,60415</link.rule.ids></links><search><creatorcontrib>Wolf, Rudolf</creatorcontrib><creatorcontrib>Wendland, W.</creatorcontrib><creatorcontrib>Trofimov, V. P.</creatorcontrib><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><title>Applicable analysis</title><description>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</description><issn>0003-6811</issn><issn>1563-504X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4G5eYDSZ_DQBN1L8g4ILFcTNcCeTdFJnkpJJW_o-vokv5gx1J64uh3O-y70HoUuCrwiW-BpjTIUkM4WlpKoQ_AhNCBc055i9H6PJ6OdDgJyis75fYUwKycUErT42MXtJULnWpe-vlNUmZtAuTRXB9boxPts601rQTWNcyrbBZ8Ytjd-ZmEZz0E1oQxfiegzbaOpBd3lYmwgpRLvxn8kFb_w5OrHQ9ubid07R2_3d6_wxXzw_PM1vF7kmjPLcKiK1oFxJChagIhVnMAPF5HBwbRnVdc3kzJjKFiCU4IoRQQpbK82pqRidInLYq2Po-2hsuY6ug7gvCS7Hsso_ZQ3MzYFx3obYwS7Eti4T7Nvhgwheu76k_-M_XolzYw</recordid><startdate>19791001</startdate><enddate>19791001</enddate><creator>Wolf, Rudolf</creator><creator>Wendland, W.</creator><creator>Trofimov, V. P.</creator><general>Gordon and Breach Science Publishers Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19791001</creationdate><title>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</title><author>Wolf, Rudolf ; Wendland, W. ; Trofimov, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1435-f918c635983afaab1b54a7a948856df43cdd487eebf2a6965941612fd9c53eb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Rudolf</creatorcontrib><creatorcontrib>Wendland, W.</creatorcontrib><creatorcontrib>Trofimov, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Applicable analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Rudolf</au><au>Wendland, W.</au><au>Trofimov, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen</atitle><jtitle>Applicable analysis</jtitle><date>1979-10-01</date><risdate>1979</risdate><volume>9</volume><issue>3</issue><spage>165</spage><epage>177</epage><pages>165-177</pages><issn>0003-6811</issn><eissn>1563-504X</eissn><abstract>In this paper we are concerned with the stability of the algebraic multiplicity of eigenvalues of holomorphic operator-valued functions in the framework of a generalized perturbation theory which is at the same time well-suited for the treatment of approximation methods. It is shown that the algebraic multiplicity of an isolated eigenvalue is stable if the operators under consideration are restricted to the class of so-called approximation-proper families of holomorphic functions of Fredholm mappings acting in certain discrete approximations. As an essential tool in this context the representation formula for the algebraic multiplicity of A. S. Markus and E. I. Sigal is used. The above problem has been rigorously studied in the case when the eigenvalue parameter occurs linearly, but even in this case our result is of interest.</abstract><pub>Gordon and Breach Science Publishers Ltd</pub><doi>10.1080/00036817908839265</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6811 |
ispartof | Applicable analysis, 1979-10, Vol.9 (3), p.165-177 |
issn | 0003-6811 1563-504X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00036817908839265 |
source | Taylor & Francis Journals Complete |
title | Zur Stabilität der algebraischen vielfachheit von eigenwerten von holomorphen fredholm-operatorfunktionen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zur%20Stabilit%C3%A4t%20der%20algebraischen%20vielfachheit%20von%20eigenwerten%20von%20holomorphen%20fredholm-operatorfunktionen&rft.jtitle=Applicable%20analysis&rft.au=Wolf,%20Rudolf&rft.date=1979-10-01&rft.volume=9&rft.issue=3&rft.spage=165&rft.epage=177&rft.pages=165-177&rft.issn=0003-6811&rft.eissn=1563-504X&rft_id=info:doi/10.1080/00036817908839265&rft_dat=%3Ccrossref_infor%3E10_1080_00036817908839265%3C/crossref_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |