A Simple and Effective Inequality Measure

Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 2018-10, Vol.72 (4), p.328-343
Hauptverfasser: Prendergast, Luke A., Staudte, Robert G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 4
container_start_page 328
container_title The American statistician
container_volume 72
creator Prendergast, Luke A.
Staudte, Robert G.
description Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.
doi_str_mv 10.1080/00031305.2017.1366366
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_2017_1366366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45116981</jstor_id><sourcerecordid>45116981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfYVDwyYfO3KT50zfH2HQw8UF9DmmTQEfXbEmr7Nvb0umjcOFyOefcAz-EZoDngCV-xBhToJjNCQYxB8p5PxdoAoyKlAgKl2gyeNLBdI1uYtz1JxacTNDDInmv9ofaJroxyco5W7bVl002jT12uq7aU_JqdeyCvUVXTtfR3p33FH2uVx_Ll3T79rxZLrZpSTlu0zwTDqQlxuXEYVI4IlxRYCuooZYZAcRxRrUutKPGWQllYaRhmhWWl1RKOkX3499D8MfOxlbtfBeavlIRlmU0EzkMLja6yuBjDNapQ6j2OpwUYDVQUb9U1EBFnan0udmY28XWh79QxgB4LqHXn0a9apwPe_3tQ21Uq0-1Dy7opqyiov9X_AAYF3FC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544347918</pqid></control><display><type>article</type><title>A Simple and Effective Inequality Measure</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Prendergast, Luke A. ; Staudte, Robert G.</creator><creatorcontrib>Prendergast, Luke A. ; Staudte, Robert G.</creatorcontrib><description>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2017.1366366</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Bounded influence function ; Confidence intervals ; Income ; Inequality ; Quantile density ; Quantiles ; Regression analysis ; Robust statistics ; Statistical methods ; Statistics</subject><ispartof>The American statistician, 2018-10, Vol.72 (4), p.328-343</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright 2018 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</citedby><cites>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45116981$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45116981$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Prendergast, Luke A.</creatorcontrib><creatorcontrib>Staudte, Robert G.</creatorcontrib><title>A Simple and Effective Inequality Measure</title><title>The American statistician</title><description>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</description><subject>Bounded influence function</subject><subject>Confidence intervals</subject><subject>Income</subject><subject>Inequality</subject><subject>Quantile density</subject><subject>Quantiles</subject><subject>Regression analysis</subject><subject>Robust statistics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfYVDwyYfO3KT50zfH2HQw8UF9DmmTQEfXbEmr7Nvb0umjcOFyOefcAz-EZoDngCV-xBhToJjNCQYxB8p5PxdoAoyKlAgKl2gyeNLBdI1uYtz1JxacTNDDInmv9ofaJroxyco5W7bVl002jT12uq7aU_JqdeyCvUVXTtfR3p33FH2uVx_Ll3T79rxZLrZpSTlu0zwTDqQlxuXEYVI4IlxRYCuooZYZAcRxRrUutKPGWQllYaRhmhWWl1RKOkX3499D8MfOxlbtfBeavlIRlmU0EzkMLja6yuBjDNapQ6j2OpwUYDVQUb9U1EBFnan0udmY28XWh79QxgB4LqHXn0a9apwPe_3tQ21Uq0-1Dy7opqyiov9X_AAYF3FC</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Prendergast, Luke A.</creator><creator>Staudte, Robert G.</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181002</creationdate><title>A Simple and Effective Inequality Measure</title><author>Prendergast, Luke A. ; Staudte, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bounded influence function</topic><topic>Confidence intervals</topic><topic>Income</topic><topic>Inequality</topic><topic>Quantile density</topic><topic>Quantiles</topic><topic>Regression analysis</topic><topic>Robust statistics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prendergast, Luke A.</creatorcontrib><creatorcontrib>Staudte, Robert G.</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prendergast, Luke A.</au><au>Staudte, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple and Effective Inequality Measure</atitle><jtitle>The American statistician</jtitle><date>2018-10-02</date><risdate>2018</risdate><volume>72</volume><issue>4</issue><spage>328</spage><epage>343</epage><pages>328-343</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00031305.2017.1366366</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2018-10, Vol.72 (4), p.328-343
issn 0003-1305
1537-2731
language eng
recordid cdi_crossref_primary_10_1080_00031305_2017_1366366
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Bounded influence function
Confidence intervals
Income
Inequality
Quantile density
Quantiles
Regression analysis
Robust statistics
Statistical methods
Statistics
title A Simple and Effective Inequality Measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20and%20Effective%20Inequality%20Measure&rft.jtitle=The%20American%20statistician&rft.au=Prendergast,%20Luke%20A.&rft.date=2018-10-02&rft.volume=72&rft.issue=4&rft.spage=328&rft.epage=343&rft.pages=328-343&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2017.1366366&rft_dat=%3Cjstor_cross%3E45116981%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544347918&rft_id=info:pmid/&rft_jstor_id=45116981&rfr_iscdi=true