A Simple and Effective Inequality Measure
Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of speci...
Gespeichert in:
Veröffentlicht in: | The American statistician 2018-10, Vol.72 (4), p.328-343 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 4 |
container_start_page | 328 |
container_title | The American statistician |
container_volume | 72 |
creator | Prendergast, Luke A. Staudte, Robert G. |
description | Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions. |
doi_str_mv | 10.1080/00031305.2017.1366366 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_2017_1366366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45116981</jstor_id><sourcerecordid>45116981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfYVDwyYfO3KT50zfH2HQw8UF9DmmTQEfXbEmr7Nvb0umjcOFyOefcAz-EZoDngCV-xBhToJjNCQYxB8p5PxdoAoyKlAgKl2gyeNLBdI1uYtz1JxacTNDDInmv9ofaJroxyco5W7bVl002jT12uq7aU_JqdeyCvUVXTtfR3p33FH2uVx_Ll3T79rxZLrZpSTlu0zwTDqQlxuXEYVI4IlxRYCuooZYZAcRxRrUutKPGWQllYaRhmhWWl1RKOkX3499D8MfOxlbtfBeavlIRlmU0EzkMLja6yuBjDNapQ6j2OpwUYDVQUb9U1EBFnan0udmY28XWh79QxgB4LqHXn0a9apwPe_3tQ21Uq0-1Dy7opqyiov9X_AAYF3FC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544347918</pqid></control><display><type>article</type><title>A Simple and Effective Inequality Measure</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Prendergast, Luke A. ; Staudte, Robert G.</creator><creatorcontrib>Prendergast, Luke A. ; Staudte, Robert G.</creatorcontrib><description>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2017.1366366</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Bounded influence function ; Confidence intervals ; Income ; Inequality ; Quantile density ; Quantiles ; Regression analysis ; Robust statistics ; Statistical methods ; Statistics</subject><ispartof>The American statistician, 2018-10, Vol.72 (4), p.328-343</ispartof><rights>2018 American Statistical Association 2018</rights><rights>Copyright 2018 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</citedby><cites>FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45116981$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45116981$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Prendergast, Luke A.</creatorcontrib><creatorcontrib>Staudte, Robert G.</creatorcontrib><title>A Simple and Effective Inequality Measure</title><title>The American statistician</title><description>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</description><subject>Bounded influence function</subject><subject>Confidence intervals</subject><subject>Income</subject><subject>Inequality</subject><subject>Quantile density</subject><subject>Quantiles</subject><subject>Regression analysis</subject><subject>Robust statistics</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfYVDwyYfO3KT50zfH2HQw8UF9DmmTQEfXbEmr7Nvb0umjcOFyOefcAz-EZoDngCV-xBhToJjNCQYxB8p5PxdoAoyKlAgKl2gyeNLBdI1uYtz1JxacTNDDInmv9ofaJroxyco5W7bVl002jT12uq7aU_JqdeyCvUVXTtfR3p33FH2uVx_Ll3T79rxZLrZpSTlu0zwTDqQlxuXEYVI4IlxRYCuooZYZAcRxRrUutKPGWQllYaRhmhWWl1RKOkX3499D8MfOxlbtfBeavlIRlmU0EzkMLja6yuBjDNapQ6j2OpwUYDVQUb9U1EBFnan0udmY28XWh79QxgB4LqHXn0a9apwPe_3tQ21Uq0-1Dy7opqyiov9X_AAYF3FC</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Prendergast, Luke A.</creator><creator>Staudte, Robert G.</creator><general>Taylor & Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181002</creationdate><title>A Simple and Effective Inequality Measure</title><author>Prendergast, Luke A. ; Staudte, Robert G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-947f18e2df92f02bf27fbb0e73d3e5d712f653aabaf3dfe81cbd8d5a5be6c3883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bounded influence function</topic><topic>Confidence intervals</topic><topic>Income</topic><topic>Inequality</topic><topic>Quantile density</topic><topic>Quantiles</topic><topic>Regression analysis</topic><topic>Robust statistics</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prendergast, Luke A.</creatorcontrib><creatorcontrib>Staudte, Robert G.</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prendergast, Luke A.</au><au>Staudte, Robert G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple and Effective Inequality Measure</atitle><jtitle>The American statistician</jtitle><date>2018-10-02</date><risdate>2018</risdate><volume>72</volume><issue>4</issue><spage>328</spage><epage>343</epage><pages>328-343</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Ratios of quantiles are often computed for income distributions as rough measures of inequality, and inference for such ratios has recently become available. The special case when the quantiles are symmetrically chosen; that is, when the p/2 quantile is divided by the (1 − p/2) quantile, is of special interest because the graph of such ratios, plotted as a function of p over the unit interval, yields an informative inequality curve. The area above the curve and less than the horizontal line at one is an easily interpretable measure of inequality. The advantages of these concepts over the traditional Lorenz curve and Gini coefficient are numerous: they are defined for all positive income distributions, they can be robustly estimated and large sample confidence intervals for the inequality coefficient are easily found. Moreover, the inequality curves satisfy a median-based transference principle and are convex for many commonly assumed income distributions.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/00031305.2017.1366366</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 2018-10, Vol.72 (4), p.328-343 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00031305_2017_1366366 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Bounded influence function Confidence intervals Income Inequality Quantile density Quantiles Regression analysis Robust statistics Statistical methods Statistics |
title | A Simple and Effective Inequality Measure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20and%20Effective%20Inequality%20Measure&rft.jtitle=The%20American%20statistician&rft.au=Prendergast,%20Luke%20A.&rft.date=2018-10-02&rft.volume=72&rft.issue=4&rft.spage=328&rft.epage=343&rft.pages=328-343&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2017.1366366&rft_dat=%3Cjstor_cross%3E45116981%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544347918&rft_id=info:pmid/&rft_jstor_id=45116981&rfr_iscdi=true |