A Statistical Inference Course Based on p-Values

Introductory statistical inference texts and courses treat the point estimation, hypothesis testing, and interval estimation problems separately, with primary emphasis on large-sample approximations. Here, I present an alternative approach to teaching this course, built around p-values, emphasizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 2017-05, Vol.71 (2), p.128-136
1. Verfasser: Martin, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 2
container_start_page 128
container_title The American statistician
container_volume 71
creator Martin, Ryan
description Introductory statistical inference texts and courses treat the point estimation, hypothesis testing, and interval estimation problems separately, with primary emphasis on large-sample approximations. Here, I present an alternative approach to teaching this course, built around p-values, emphasizing provably valid inference for all sample sizes. Details about computation and marginalization are also provided, with several illustrative examples, along with a course outline. Supplementary materials for this article are available online.
doi_str_mv 10.1080/00031305.2016.1208629
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_2016_1208629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45118418</jstor_id><sourcerecordid>45118418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-11f6c6ca85609d031cb9285e346a56433362aa933d67d752ca6356ee3f8b98e03</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoWnanxAw9Ox0pbVk-dY09BEI9NDHVSiyBA6OlUoOJf--Mk577GlZ9puZZQiZUZhTkHAHAEgR-JwBFXPKQApWnZEJ5VjmrER6TiYDkw_QJbmKcZtWKAWbEFhkb73um9g3RrfZqnM22M7YbOkPIdrsQUdbZ77L9vmnbg82XpMLp9tob05zSj6eHt-XL_n69Xm1XKxzgwL6nFInjDBacgFVnf4zm4pJbrEQmosCEQXTukKsRVmXnBktkAtr0clNJS3glNyOvvvgv1Jur7bpoy5FKsaLIvlUpUwUHykTfIzBOrUPzU6Ho6KghnLUbzlqKEedykm62ajbxt6HP1HBKZUFHXzvx3vTOR92-tuHtla9PrY-uKA700SF_0f8AMQvcXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544346978</pqid></control><display><type>article</type><title>A Statistical Inference Course Based on p-Values</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Martin, Ryan</creator><creatorcontrib>Martin, Ryan</creatorcontrib><description>Introductory statistical inference texts and courses treat the point estimation, hypothesis testing, and interval estimation problems separately, with primary emphasis on large-sample approximations. Here, I present an alternative approach to teaching this course, built around p-values, emphasizing provably valid inference for all sample sizes. Details about computation and marginalization are also provided, with several illustrative examples, along with a course outline. Supplementary materials for this article are available online.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2016.1208629</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Confidence interval ; Hypothesis testing ; Large-sample theory ; Monte Carlo ; Regression analysis ; Statistical inference ; Statistical methods ; Statistics ; TEACHER'S CORNER ; Teaching statistics ; Valid inference</subject><ispartof>The American statistician, 2017-05, Vol.71 (2), p.128-136</ispartof><rights>2017 American Statistical Association 2017</rights><rights>Copyright 2017 American Statistical Association</rights><rights>2017 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-11f6c6ca85609d031cb9285e346a56433362aa933d67d752ca6356ee3f8b98e03</citedby><cites>FETCH-LOGICAL-c360t-11f6c6ca85609d031cb9285e346a56433362aa933d67d752ca6356ee3f8b98e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45118418$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45118418$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Martin, Ryan</creatorcontrib><title>A Statistical Inference Course Based on p-Values</title><title>The American statistician</title><description>Introductory statistical inference texts and courses treat the point estimation, hypothesis testing, and interval estimation problems separately, with primary emphasis on large-sample approximations. Here, I present an alternative approach to teaching this course, built around p-values, emphasizing provably valid inference for all sample sizes. Details about computation and marginalization are also provided, with several illustrative examples, along with a course outline. Supplementary materials for this article are available online.</description><subject>Confidence interval</subject><subject>Hypothesis testing</subject><subject>Large-sample theory</subject><subject>Monte Carlo</subject><subject>Regression analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>TEACHER'S CORNER</subject><subject>Teaching statistics</subject><subject>Valid inference</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoWnanxAw9Ox0pbVk-dY09BEI9NDHVSiyBA6OlUoOJf--Mk577GlZ9puZZQiZUZhTkHAHAEgR-JwBFXPKQApWnZEJ5VjmrER6TiYDkw_QJbmKcZtWKAWbEFhkb73um9g3RrfZqnM22M7YbOkPIdrsQUdbZ77L9vmnbg82XpMLp9tob05zSj6eHt-XL_n69Xm1XKxzgwL6nFInjDBacgFVnf4zm4pJbrEQmosCEQXTukKsRVmXnBktkAtr0clNJS3glNyOvvvgv1Jur7bpoy5FKsaLIvlUpUwUHykTfIzBOrUPzU6Ho6KghnLUbzlqKEedykm62ajbxt6HP1HBKZUFHXzvx3vTOR92-tuHtla9PrY-uKA700SF_0f8AMQvcXk</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Martin, Ryan</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170501</creationdate><title>A Statistical Inference Course Based on p-Values</title><author>Martin, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-11f6c6ca85609d031cb9285e346a56433362aa933d67d752ca6356ee3f8b98e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Confidence interval</topic><topic>Hypothesis testing</topic><topic>Large-sample theory</topic><topic>Monte Carlo</topic><topic>Regression analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>TEACHER'S CORNER</topic><topic>Teaching statistics</topic><topic>Valid inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Ryan</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Inference Course Based on p-Values</atitle><jtitle>The American statistician</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>71</volume><issue>2</issue><spage>128</spage><epage>136</epage><pages>128-136</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Introductory statistical inference texts and courses treat the point estimation, hypothesis testing, and interval estimation problems separately, with primary emphasis on large-sample approximations. Here, I present an alternative approach to teaching this course, built around p-values, emphasizing provably valid inference for all sample sizes. Details about computation and marginalization are also provided, with several illustrative examples, along with a course outline. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00031305.2016.1208629</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2017-05, Vol.71 (2), p.128-136
issn 0003-1305
1537-2731
language eng
recordid cdi_crossref_primary_10_1080_00031305_2016_1208629
source JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Confidence interval
Hypothesis testing
Large-sample theory
Monte Carlo
Regression analysis
Statistical inference
Statistical methods
Statistics
TEACHER'S CORNER
Teaching statistics
Valid inference
title A Statistical Inference Course Based on p-Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Inference%20Course%20Based%20on%20p-Values&rft.jtitle=The%20American%20statistician&rft.au=Martin,%20Ryan&rft.date=2017-05-01&rft.volume=71&rft.issue=2&rft.spage=128&rft.epage=136&rft.pages=128-136&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2016.1208629&rft_dat=%3Cjstor_cross%3E45118418%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544346978&rft_id=info:pmid/&rft_jstor_id=45118418&rfr_iscdi=true