A Characterization of Principal Components for Projection Pursuit

Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional proje...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 1999-05, Vol.53 (2), p.108-109
Hauptverfasser: Bolton, Richard J., Krzanowski, Wojtek J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 2
container_start_page 108
container_title The American statistician
container_volume 53
creator Bolton, Richard J.
Krzanowski, Wojtek J.
description Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.
doi_str_mv 10.1080/00031305.1999.10474441
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_1999_10474441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2685727</jstor_id><sourcerecordid>2685727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMoOKd_QYp623ny1bSXpfgFA3eh1yFLG2zpmpq0iP56U7fhbsSrkJznvCd5gtAlhgWGFG4BgGIKfIGzLAtHTDDG8BGaYU5FTATFx2g2QfFEnaIz75uwBZGQGcrzqHhTTumhcvWXGmrbRdZEK1d3uu5VGxV209uu6gYfGetCwTaV_sFWo_NjPZyjE6NaX13s1jl6vb97KR7j5fPDU5EvY01pNsSEK6pTgxlbl2WSQJVViSGhhjNBKGgNJWgOkJa4TIxhWgXalITSNeeMlHSOrra5vbPvY-UH2djRdWGkJCRlFBjBAbr-C8KCQ0oTCNPmKNlS2lnvXWVk7-qNcp8Sg5ycyr1TOTmVe6eh8WYXr7xWrXEqWPK_3SnlhB9gjR-sOwwPLxWSJCkX4V_mKN9idRfUbtSHdW0pB_XZWrePpv_c6BujqZRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228430421</pqid></control><display><type>article</type><title>A Characterization of Principal Components for Projection Pursuit</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Bolton, Richard J. ; Krzanowski, Wojtek J.</creator><creatorcontrib>Bolton, Richard J. ; Krzanowski, Wojtek J.</creatorcontrib><description>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.1999.10474441</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Data analysis ; Dimension reduction ; Exact sciences and technology ; Exploratory data analysis ; Graphical projections ; Mathematics ; Maximized likelihood ; Multivariate analysis ; Non-normality ; Optimization ; Principal components analysis ; Probability and statistics ; Sciences and techniques of general use ; Skewed distribution ; Skewness ; Software ; Statistical variance ; Statistics</subject><ispartof>The American statistician, 1999-05, Vol.53 (2), p.108-109</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Statistical Association May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</citedby><cites>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2685727$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2685727$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1835251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Krzanowski, Wojtek J.</creatorcontrib><title>A Characterization of Principal Components for Projection Pursuit</title><title>The American statistician</title><description>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</description><subject>Data analysis</subject><subject>Dimension reduction</subject><subject>Exact sciences and technology</subject><subject>Exploratory data analysis</subject><subject>Graphical projections</subject><subject>Mathematics</subject><subject>Maximized likelihood</subject><subject>Multivariate analysis</subject><subject>Non-normality</subject><subject>Optimization</subject><subject>Principal components analysis</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Skewed distribution</subject><subject>Skewness</subject><subject>Software</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1LwzAUhoMoOKd_QYp623ny1bSXpfgFA3eh1yFLG2zpmpq0iP56U7fhbsSrkJznvCd5gtAlhgWGFG4BgGIKfIGzLAtHTDDG8BGaYU5FTATFx2g2QfFEnaIz75uwBZGQGcrzqHhTTumhcvWXGmrbRdZEK1d3uu5VGxV209uu6gYfGetCwTaV_sFWo_NjPZyjE6NaX13s1jl6vb97KR7j5fPDU5EvY01pNsSEK6pTgxlbl2WSQJVViSGhhjNBKGgNJWgOkJa4TIxhWgXalITSNeeMlHSOrra5vbPvY-UH2djRdWGkJCRlFBjBAbr-C8KCQ0oTCNPmKNlS2lnvXWVk7-qNcp8Sg5ycyr1TOTmVe6eh8WYXr7xWrXEqWPK_3SnlhB9gjR-sOwwPLxWSJCkX4V_mKN9idRfUbtSHdW0pB_XZWrePpv_c6BujqZRY</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Bolton, Richard J.</creator><creator>Krzanowski, Wojtek J.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JTYFY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>POGQB</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990501</creationdate><title>A Characterization of Principal Components for Projection Pursuit</title><author>Bolton, Richard J. ; Krzanowski, Wojtek J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Data analysis</topic><topic>Dimension reduction</topic><topic>Exact sciences and technology</topic><topic>Exploratory data analysis</topic><topic>Graphical projections</topic><topic>Mathematics</topic><topic>Maximized likelihood</topic><topic>Multivariate analysis</topic><topic>Non-normality</topic><topic>Optimization</topic><topic>Principal components analysis</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Skewed distribution</topic><topic>Skewness</topic><topic>Software</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Krzanowski, Wojtek J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 37</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Sociology &amp; Social Sciences Collection</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, Richard J.</au><au>Krzanowski, Wojtek J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Characterization of Principal Components for Projection Pursuit</atitle><jtitle>The American statistician</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>53</volume><issue>2</issue><spage>108</spage><epage>109</epage><pages>108-109</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00031305.1999.10474441</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 1999-05, Vol.53 (2), p.108-109
issn 0003-1305
1537-2731
language eng
recordid cdi_crossref_primary_10_1080_00031305_1999_10474441
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Data analysis
Dimension reduction
Exact sciences and technology
Exploratory data analysis
Graphical projections
Mathematics
Maximized likelihood
Multivariate analysis
Non-normality
Optimization
Principal components analysis
Probability and statistics
Sciences and techniques of general use
Skewed distribution
Skewness
Software
Statistical variance
Statistics
title A Characterization of Principal Components for Projection Pursuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Characterization%20of%20Principal%20Components%20for%20Projection%20Pursuit&rft.jtitle=The%20American%20statistician&rft.au=Bolton,%20Richard%20J.&rft.date=1999-05-01&rft.volume=53&rft.issue=2&rft.spage=108&rft.epage=109&rft.pages=108-109&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.1999.10474441&rft_dat=%3Cjstor_cross%3E2685727%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228430421&rft_id=info:pmid/&rft_jstor_id=2685727&rfr_iscdi=true