A Characterization of Principal Components for Projection Pursuit
Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional proje...
Gespeichert in:
Veröffentlicht in: | The American statistician 1999-05, Vol.53 (2), p.108-109 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 2 |
container_start_page | 108 |
container_title | The American statistician |
container_volume | 53 |
creator | Bolton, Richard J. Krzanowski, Wojtek J. |
description | Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality. |
doi_str_mv | 10.1080/00031305.1999.10474441 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_1999_10474441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2685727</jstor_id><sourcerecordid>2685727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMoOKd_QYp623ny1bSXpfgFA3eh1yFLG2zpmpq0iP56U7fhbsSrkJznvCd5gtAlhgWGFG4BgGIKfIGzLAtHTDDG8BGaYU5FTATFx2g2QfFEnaIz75uwBZGQGcrzqHhTTumhcvWXGmrbRdZEK1d3uu5VGxV209uu6gYfGetCwTaV_sFWo_NjPZyjE6NaX13s1jl6vb97KR7j5fPDU5EvY01pNsSEK6pTgxlbl2WSQJVViSGhhjNBKGgNJWgOkJa4TIxhWgXalITSNeeMlHSOrra5vbPvY-UH2djRdWGkJCRlFBjBAbr-C8KCQ0oTCNPmKNlS2lnvXWVk7-qNcp8Sg5ycyr1TOTmVe6eh8WYXr7xWrXEqWPK_3SnlhB9gjR-sOwwPLxWSJCkX4V_mKN9idRfUbtSHdW0pB_XZWrePpv_c6BujqZRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228430421</pqid></control><display><type>article</type><title>A Characterization of Principal Components for Projection Pursuit</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><creator>Bolton, Richard J. ; Krzanowski, Wojtek J.</creator><creatorcontrib>Bolton, Richard J. ; Krzanowski, Wojtek J.</creatorcontrib><description>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.1999.10474441</identifier><identifier>CODEN: ASTAAJ</identifier><language>eng</language><publisher>Alexandria, VA: Taylor & Francis Group</publisher><subject>Data analysis ; Dimension reduction ; Exact sciences and technology ; Exploratory data analysis ; Graphical projections ; Mathematics ; Maximized likelihood ; Multivariate analysis ; Non-normality ; Optimization ; Principal components analysis ; Probability and statistics ; Sciences and techniques of general use ; Skewed distribution ; Skewness ; Software ; Statistical variance ; Statistics</subject><ispartof>The American statistician, 1999-05, Vol.53 (2), p.108-109</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>Copyright 1999 American Statistical Association</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Statistical Association May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</citedby><cites>FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2685727$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2685727$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1835251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Krzanowski, Wojtek J.</creatorcontrib><title>A Characterization of Principal Components for Projection Pursuit</title><title>The American statistician</title><description>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</description><subject>Data analysis</subject><subject>Dimension reduction</subject><subject>Exact sciences and technology</subject><subject>Exploratory data analysis</subject><subject>Graphical projections</subject><subject>Mathematics</subject><subject>Maximized likelihood</subject><subject>Multivariate analysis</subject><subject>Non-normality</subject><subject>Optimization</subject><subject>Principal components analysis</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Skewed distribution</subject><subject>Skewness</subject><subject>Software</subject><subject>Statistical variance</subject><subject>Statistics</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1LwzAUhoMoOKd_QYp623ny1bSXpfgFA3eh1yFLG2zpmpq0iP56U7fhbsSrkJznvCd5gtAlhgWGFG4BgGIKfIGzLAtHTDDG8BGaYU5FTATFx2g2QfFEnaIz75uwBZGQGcrzqHhTTumhcvWXGmrbRdZEK1d3uu5VGxV209uu6gYfGetCwTaV_sFWo_NjPZyjE6NaX13s1jl6vb97KR7j5fPDU5EvY01pNsSEK6pTgxlbl2WSQJVViSGhhjNBKGgNJWgOkJa4TIxhWgXalITSNeeMlHSOrra5vbPvY-UH2djRdWGkJCRlFBjBAbr-C8KCQ0oTCNPmKNlS2lnvXWVk7-qNcp8Sg5ycyr1TOTmVe6eh8WYXr7xWrXEqWPK_3SnlhB9gjR-sOwwPLxWSJCkX4V_mKN9idRfUbtSHdW0pB_XZWrePpv_c6BujqZRY</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Bolton, Richard J.</creator><creator>Krzanowski, Wojtek J.</creator><general>Taylor & Francis Group</general><general>American Statistical Association</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JTYFY</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88F</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0T</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>POGQB</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PRQQA</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990501</creationdate><title>A Characterization of Principal Components for Projection Pursuit</title><author>Bolton, Richard J. ; Krzanowski, Wojtek J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-25a3c8f144bdd660e9e6f2c33197230cc0d0c5008d1d6ff4cac8ffd233b5542d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Data analysis</topic><topic>Dimension reduction</topic><topic>Exact sciences and technology</topic><topic>Exploratory data analysis</topic><topic>Graphical projections</topic><topic>Mathematics</topic><topic>Maximized likelihood</topic><topic>Multivariate analysis</topic><topic>Non-normality</topic><topic>Optimization</topic><topic>Principal components analysis</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Skewed distribution</topic><topic>Skewness</topic><topic>Software</topic><topic>Statistical variance</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Krzanowski, Wojtek J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 37</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest Sociology & Social Sciences Collection</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Social Sciences</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, Richard J.</au><au>Krzanowski, Wojtek J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Characterization of Principal Components for Projection Pursuit</atitle><jtitle>The American statistician</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>53</volume><issue>2</issue><spage>108</spage><epage>109</epage><pages>108-109</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><coden>ASTAAJ</coden><abstract>Principal component analysis is a technique often found to be useful for identifying structure in multivariate data. Although it has various characterizations (Rao 1964), the most familiar is as a variance-maximizing projection. Projection pursuit is a methodology for selecting low-dimensional projections of multivariate data by the optimization of some index of "interestingness" over all projection directions. Principal component analysis can be viewed as an example of projection pursuit, and we justify its success in structure identification by characterizing it in terms of maximum likelihood under the assumption of normality.</abstract><cop>Alexandria, VA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00031305.1999.10474441</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-1305 |
ispartof | The American statistician, 1999-05, Vol.53 (2), p.108-109 |
issn | 0003-1305 1537-2731 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00031305_1999_10474441 |
source | Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics |
subjects | Data analysis Dimension reduction Exact sciences and technology Exploratory data analysis Graphical projections Mathematics Maximized likelihood Multivariate analysis Non-normality Optimization Principal components analysis Probability and statistics Sciences and techniques of general use Skewed distribution Skewness Software Statistical variance Statistics |
title | A Characterization of Principal Components for Projection Pursuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Characterization%20of%20Principal%20Components%20for%20Projection%20Pursuit&rft.jtitle=The%20American%20statistician&rft.au=Bolton,%20Richard%20J.&rft.date=1999-05-01&rft.volume=53&rft.issue=2&rft.spage=108&rft.epage=109&rft.pages=108-109&rft.issn=0003-1305&rft.eissn=1537-2731&rft.coden=ASTAAJ&rft_id=info:doi/10.1080/00031305.1999.10474441&rft_dat=%3Cjstor_cross%3E2685727%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228430421&rft_id=info:pmid/&rft_jstor_id=2685727&rfr_iscdi=true |