Sós Permutations

Let for fixed real parameters α and β. For any positive integer n, define the Sós permutation π to be the lexicographically first permutation such that . In this article, we give a bijection between Sós permutations and regions in a partition of the parameter space . This allows us to enumerate thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2021-05, Vol.128 (5), p.407-422
Hauptverfasser: Bockting-Conrad, Sarah, Kashina, Yevgenia, Petersen, T. Kyle, Tenner, Bridget Eileen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 5
container_start_page 407
container_title The American mathematical monthly
container_volume 128
creator Bockting-Conrad, Sarah
Kashina, Yevgenia
Petersen, T. Kyle
Tenner, Bridget Eileen
description Let for fixed real parameters α and β. For any positive integer n, define the Sós permutation π to be the lexicographically first permutation such that . In this article, we give a bijection between Sós permutations and regions in a partition of the parameter space . This allows us to enumerate these permutations and to obtain the following "three areas" theorem: in any vertical strip , with a Farey interval, there are at most three distinct areas of regions, and one of these areas is the sum of the other two.
doi_str_mv 10.1080/00029890.2021.1889911
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00029890_2021_1889911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48662652</jstor_id><sourcerecordid>48662652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-2b3b4d319b50377c5a2019b96ef008675885f0298c7563d9442b351edf765eb23</originalsourceid><addsrcrecordid>eNp9j8FKxDAURYMoOI4u_IABwXXrS9KkyU4ZHBUGFNR1SNsEWmaaMWmR-S4_wR8zoaNLV4_HO_fedxFaYMgxCLgBACKFhJwAwTkWQkqMj9AMSwoZyJIco1lisgSdorMQurgCK8gMXb5-f4WrF-O346CH1vXhHJ1YvQnm4jDn6H11_7Z8zNbPD0_Lu3VWUxBDRipaFQ3FsmJAy7JmmkBcJDcWQPCSCcFs-qsuGaeNLIqoYNg0tuTMVITO0fXku_PuYzRhUJ0bfR8jFRGcJ4sCR4pNVO1dCN5YtfPtVvu9wqBSe_XbXqX26tA-6haTrguD83-iIjoTzlL67XRve-v8Vn86v2nUoPcb563Xfd0GRf-P-AEt9Gdu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866867541</pqid></control><display><type>article</type><title>Sós Permutations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bockting-Conrad, Sarah ; Kashina, Yevgenia ; Petersen, T. Kyle ; Tenner, Bridget Eileen</creator><creatorcontrib>Bockting-Conrad, Sarah ; Kashina, Yevgenia ; Petersen, T. Kyle ; Tenner, Bridget Eileen</creatorcontrib><description>Let for fixed real parameters α and β. For any positive integer n, define the Sós permutation π to be the lexicographically first permutation such that . In this article, we give a bijection between Sós permutations and regions in a partition of the parameter space . This allows us to enumerate these permutations and to obtain the following "three areas" theorem: in any vertical strip , with a Farey interval, there are at most three distinct areas of regions, and one of these areas is the sum of the other two.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2021.1889911</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis</publisher><subject>Integer programming ; Parameter optimization ; Parameters ; Permutations ; Primary 05A05 ; Secondary 11K06 ; Theorems ; Variables</subject><ispartof>The American mathematical monthly, 2021-05, Vol.128 (5), p.407-422</ispartof><rights>THE MATHEMATICAL ASSOCIATION OF AMERICA</rights><rights>Copyright Taylor &amp; Francis Ltd. May 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-2b3b4d319b50377c5a2019b96ef008675885f0298c7563d9442b351edf765eb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bockting-Conrad, Sarah</creatorcontrib><creatorcontrib>Kashina, Yevgenia</creatorcontrib><creatorcontrib>Petersen, T. Kyle</creatorcontrib><creatorcontrib>Tenner, Bridget Eileen</creatorcontrib><title>Sós Permutations</title><title>The American mathematical monthly</title><description>Let for fixed real parameters α and β. For any positive integer n, define the Sós permutation π to be the lexicographically first permutation such that . In this article, we give a bijection between Sós permutations and regions in a partition of the parameter space . This allows us to enumerate these permutations and to obtain the following "three areas" theorem: in any vertical strip , with a Farey interval, there are at most three distinct areas of regions, and one of these areas is the sum of the other two.</description><subject>Integer programming</subject><subject>Parameter optimization</subject><subject>Parameters</subject><subject>Permutations</subject><subject>Primary 05A05</subject><subject>Secondary 11K06</subject><subject>Theorems</subject><subject>Variables</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKxDAURYMoOI4u_IABwXXrS9KkyU4ZHBUGFNR1SNsEWmaaMWmR-S4_wR8zoaNLV4_HO_fedxFaYMgxCLgBACKFhJwAwTkWQkqMj9AMSwoZyJIco1lisgSdorMQurgCK8gMXb5-f4WrF-O346CH1vXhHJ1YvQnm4jDn6H11_7Z8zNbPD0_Lu3VWUxBDRipaFQ3FsmJAy7JmmkBcJDcWQPCSCcFs-qsuGaeNLIqoYNg0tuTMVITO0fXku_PuYzRhUJ0bfR8jFRGcJ4sCR4pNVO1dCN5YtfPtVvu9wqBSe_XbXqX26tA-6haTrguD83-iIjoTzlL67XRve-v8Vn86v2nUoPcb563Xfd0GRf-P-AEt9Gdu</recordid><startdate>20210528</startdate><enddate>20210528</enddate><creator>Bockting-Conrad, Sarah</creator><creator>Kashina, Yevgenia</creator><creator>Petersen, T. Kyle</creator><creator>Tenner, Bridget Eileen</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis, Ltd</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210528</creationdate><title>Sós Permutations</title><author>Bockting-Conrad, Sarah ; Kashina, Yevgenia ; Petersen, T. Kyle ; Tenner, Bridget Eileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-2b3b4d319b50377c5a2019b96ef008675885f0298c7563d9442b351edf765eb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Integer programming</topic><topic>Parameter optimization</topic><topic>Parameters</topic><topic>Permutations</topic><topic>Primary 05A05</topic><topic>Secondary 11K06</topic><topic>Theorems</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bockting-Conrad, Sarah</creatorcontrib><creatorcontrib>Kashina, Yevgenia</creatorcontrib><creatorcontrib>Petersen, T. Kyle</creatorcontrib><creatorcontrib>Tenner, Bridget Eileen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bockting-Conrad, Sarah</au><au>Kashina, Yevgenia</au><au>Petersen, T. Kyle</au><au>Tenner, Bridget Eileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sós Permutations</atitle><jtitle>The American mathematical monthly</jtitle><date>2021-05-28</date><risdate>2021</risdate><volume>128</volume><issue>5</issue><spage>407</spage><epage>422</epage><pages>407-422</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>Let for fixed real parameters α and β. For any positive integer n, define the Sós permutation π to be the lexicographically first permutation such that . In this article, we give a bijection between Sós permutations and regions in a partition of the parameter space . This allows us to enumerate these permutations and to obtain the following "three areas" theorem: in any vertical strip , with a Farey interval, there are at most three distinct areas of regions, and one of these areas is the sum of the other two.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00029890.2021.1889911</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2021-05, Vol.128 (5), p.407-422
issn 0002-9890
1930-0972
language eng
recordid cdi_crossref_primary_10_1080_00029890_2021_1889911
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Integer programming
Parameter optimization
Parameters
Permutations
Primary 05A05
Secondary 11K06
Theorems
Variables
title Sós Permutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S%C3%B3s%20Permutations&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Bockting-Conrad,%20Sarah&rft.date=2021-05-28&rft.volume=128&rft.issue=5&rft.spage=407&rft.epage=422&rft.pages=407-422&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2021.1889911&rft_dat=%3Cjstor_cross%3E48662652%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866867541&rft_id=info:pmid/&rft_jstor_id=48662652&rfr_iscdi=true