Asymptotic Behaviour of Nonlinear Systems
Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2004-12, Vol.111 (10), p.864-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 889 |
---|---|
container_issue | 10 |
container_start_page | 864 |
container_title | The American mathematical monthly |
container_volume | 111 |
creator | Logemann, Hartmut Ryan, Eugene P. |
description | Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions. |
doi_str_mv | 10.1080/00029890.2004.11920152 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00029890_2004_11920152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4145095</jstor_id><sourcerecordid>4145095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKf_ghTx4qHzy5d2SY5T_AVDD-o5ZGmCHV0zk07pf29KHXjzFALP-70vDyHnFGYUBFwDAEohYYYAxYxSiUBLPCATKhnkIDkekskA5QN1TE5iXKcvlAVOyNUi9ptt57vaZDf2Q3_Vfhcy77Jn3zZ1a3XIXvvY2U08JUdON9Ge_b5T8n5_93b7mC9fHp5uF8vc4Bwx10Kg0FyWjEnG5lRrV3JRpmomjHVGrGTldFUKLisusDCCayPpymLazR1jU3Ix3t0G_7mzsVPrNKlNlQqB8YIBFgmaj5AJPsZgndqGeqNDryiowYraW1GDFbW3koKXY3AdOx_-ppABVwUtSkjbp2QxYnXrfNjobx-aSnW6b3xwQbemjor9U_UDKrRyLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203743024</pqid></control><display><type>article</type><title>Asymptotic Behaviour of Nonlinear Systems</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Logemann, Hartmut ; Ryan, Eugene P.</creator><creatorcontrib>Logemann, Hartmut ; Ryan, Eugene P.</creatorcontrib><description>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2004.11920152</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Taylor & Francis</publisher><subject>Continuous functions ; Control theory ; Differential equations ; Differentials ; Dynamical systems ; Engineering ; Integrable functions ; Mathematical functions ; Mathematical intervals ; Mathematical theorems ; Mathematics ; Motion control ; Nonlinear systems ; Ordinary differential equations ; Systems stability</subject><ispartof>The American mathematical monthly, 2004-12, Vol.111 (10), p.864-889</ispartof><rights>Copyright Taylor & Francis</rights><rights>Copyright 2004 The Mathematical Association of America</rights><rights>Copyright Mathematical Association Of America Dec 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</citedby><cites>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4145095$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4145095$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Logemann, Hartmut</creatorcontrib><creatorcontrib>Ryan, Eugene P.</creatorcontrib><title>Asymptotic Behaviour of Nonlinear Systems</title><title>The American mathematical monthly</title><description>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</description><subject>Continuous functions</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Integrable functions</subject><subject>Mathematical functions</subject><subject>Mathematical intervals</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Motion control</subject><subject>Nonlinear systems</subject><subject>Ordinary differential equations</subject><subject>Systems stability</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM9LwzAYhoMoOKf_ghTx4qHzy5d2SY5T_AVDD-o5ZGmCHV0zk07pf29KHXjzFALP-70vDyHnFGYUBFwDAEohYYYAxYxSiUBLPCATKhnkIDkekskA5QN1TE5iXKcvlAVOyNUi9ptt57vaZDf2Q3_Vfhcy77Jn3zZ1a3XIXvvY2U08JUdON9Ge_b5T8n5_93b7mC9fHp5uF8vc4Bwx10Kg0FyWjEnG5lRrV3JRpmomjHVGrGTldFUKLisusDCCayPpymLazR1jU3Ix3t0G_7mzsVPrNKlNlQqB8YIBFgmaj5AJPsZgndqGeqNDryiowYraW1GDFbW3koKXY3AdOx_-ppABVwUtSkjbp2QxYnXrfNjobx-aSnW6b3xwQbemjor9U_UDKrRyLg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Logemann, Hartmut</creator><creator>Ryan, Eugene P.</creator><general>Taylor & Francis</general><general>Mathematical Association of America</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20041201</creationdate><title>Asymptotic Behaviour of Nonlinear Systems</title><author>Logemann, Hartmut ; Ryan, Eugene P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Continuous functions</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Integrable functions</topic><topic>Mathematical functions</topic><topic>Mathematical intervals</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Motion control</topic><topic>Nonlinear systems</topic><topic>Ordinary differential equations</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logemann, Hartmut</creatorcontrib><creatorcontrib>Ryan, Eugene P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logemann, Hartmut</au><au>Ryan, Eugene P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behaviour of Nonlinear Systems</atitle><jtitle>The American mathematical monthly</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>111</volume><issue>10</issue><spage>864</spage><epage>889</epage><pages>864-889</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</abstract><cop>Washington</cop><pub>Taylor & Francis</pub><doi>10.1080/00029890.2004.11920152</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2004-12, Vol.111 (10), p.864-889 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00029890_2004_11920152 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Continuous functions Control theory Differential equations Differentials Dynamical systems Engineering Integrable functions Mathematical functions Mathematical intervals Mathematical theorems Mathematics Motion control Nonlinear systems Ordinary differential equations Systems stability |
title | Asymptotic Behaviour of Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behaviour%20of%20Nonlinear%20Systems&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Logemann,%20Hartmut&rft.date=2004-12-01&rft.volume=111&rft.issue=10&rft.spage=864&rft.epage=889&rft.pages=864-889&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.2004.11920152&rft_dat=%3Cjstor_cross%3E4145095%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203743024&rft_id=info:pmid/&rft_jstor_id=4145095&rfr_iscdi=true |