Asymptotic Behaviour of Nonlinear Systems

Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2004-12, Vol.111 (10), p.864-889
Hauptverfasser: Logemann, Hartmut, Ryan, Eugene P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 889
container_issue 10
container_start_page 864
container_title The American mathematical monthly
container_volume 111
creator Logemann, Hartmut
Ryan, Eugene P.
description Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.
doi_str_mv 10.1080/00029890.2004.11920152
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00029890_2004_11920152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4145095</jstor_id><sourcerecordid>4145095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKf_ghTx4qHzy5d2SY5T_AVDD-o5ZGmCHV0zk07pf29KHXjzFALP-70vDyHnFGYUBFwDAEohYYYAxYxSiUBLPCATKhnkIDkekskA5QN1TE5iXKcvlAVOyNUi9ptt57vaZDf2Q3_Vfhcy77Jn3zZ1a3XIXvvY2U08JUdON9Ge_b5T8n5_93b7mC9fHp5uF8vc4Bwx10Kg0FyWjEnG5lRrV3JRpmomjHVGrGTldFUKLisusDCCayPpymLazR1jU3Ix3t0G_7mzsVPrNKlNlQqB8YIBFgmaj5AJPsZgndqGeqNDryiowYraW1GDFbW3koKXY3AdOx_-ppABVwUtSkjbp2QxYnXrfNjobx-aSnW6b3xwQbemjor9U_UDKrRyLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203743024</pqid></control><display><type>article</type><title>Asymptotic Behaviour of Nonlinear Systems</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Logemann, Hartmut ; Ryan, Eugene P.</creator><creatorcontrib>Logemann, Hartmut ; Ryan, Eugene P.</creatorcontrib><description>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2004.11920152</identifier><identifier>CODEN: AMMYAE</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis</publisher><subject>Continuous functions ; Control theory ; Differential equations ; Differentials ; Dynamical systems ; Engineering ; Integrable functions ; Mathematical functions ; Mathematical intervals ; Mathematical theorems ; Mathematics ; Motion control ; Nonlinear systems ; Ordinary differential equations ; Systems stability</subject><ispartof>The American mathematical monthly, 2004-12, Vol.111 (10), p.864-889</ispartof><rights>Copyright Taylor &amp; Francis</rights><rights>Copyright 2004 The Mathematical Association of America</rights><rights>Copyright Mathematical Association Of America Dec 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</citedby><cites>FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4145095$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4145095$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Logemann, Hartmut</creatorcontrib><creatorcontrib>Ryan, Eugene P.</creatorcontrib><title>Asymptotic Behaviour of Nonlinear Systems</title><title>The American mathematical monthly</title><description>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</description><subject>Continuous functions</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Dynamical systems</subject><subject>Engineering</subject><subject>Integrable functions</subject><subject>Mathematical functions</subject><subject>Mathematical intervals</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Motion control</subject><subject>Nonlinear systems</subject><subject>Ordinary differential equations</subject><subject>Systems stability</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkM9LwzAYhoMoOKf_ghTx4qHzy5d2SY5T_AVDD-o5ZGmCHV0zk07pf29KHXjzFALP-70vDyHnFGYUBFwDAEohYYYAxYxSiUBLPCATKhnkIDkekskA5QN1TE5iXKcvlAVOyNUi9ptt57vaZDf2Q3_Vfhcy77Jn3zZ1a3XIXvvY2U08JUdON9Ge_b5T8n5_93b7mC9fHp5uF8vc4Bwx10Kg0FyWjEnG5lRrV3JRpmomjHVGrGTldFUKLisusDCCayPpymLazR1jU3Ix3t0G_7mzsVPrNKlNlQqB8YIBFgmaj5AJPsZgndqGeqNDryiowYraW1GDFbW3koKXY3AdOx_-ppABVwUtSkjbp2QxYnXrfNjobx-aSnW6b3xwQbemjor9U_UDKrRyLg</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>Logemann, Hartmut</creator><creator>Ryan, Eugene P.</creator><general>Taylor &amp; Francis</general><general>Mathematical Association of America</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20041201</creationdate><title>Asymptotic Behaviour of Nonlinear Systems</title><author>Logemann, Hartmut ; Ryan, Eugene P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2622-a8828a7953393361aaf578598938cefc8b9dfad5879d7824c87ac91be29207f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Continuous functions</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Dynamical systems</topic><topic>Engineering</topic><topic>Integrable functions</topic><topic>Mathematical functions</topic><topic>Mathematical intervals</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Motion control</topic><topic>Nonlinear systems</topic><topic>Ordinary differential equations</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logemann, Hartmut</creatorcontrib><creatorcontrib>Ryan, Eugene P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logemann, Hartmut</au><au>Ryan, Eugene P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behaviour of Nonlinear Systems</atitle><jtitle>The American mathematical monthly</jtitle><date>2004-12-01</date><risdate>2004</risdate><volume>111</volume><issue>10</issue><spage>864</spage><epage>889</epage><pages>864-889</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><coden>AMMYAE</coden><abstract>Qualitative results on the long-term behavior of dynamical processes are of great importance in the applications of differential equations, dynamical systems, and control theory to science and engineering. Here, Logemann and Ryan attempt to provide a self-contained, elementary, and unified approach to the analysis of certain aspects of the asymptotic behavior of solutions of ordinary differential equations and differential inclusions.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00029890.2004.11920152</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2004-12, Vol.111 (10), p.864-889
issn 0002-9890
1930-0972
language eng
recordid cdi_crossref_primary_10_1080_00029890_2004_11920152
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Continuous functions
Control theory
Differential equations
Differentials
Dynamical systems
Engineering
Integrable functions
Mathematical functions
Mathematical intervals
Mathematical theorems
Mathematics
Motion control
Nonlinear systems
Ordinary differential equations
Systems stability
title Asymptotic Behaviour of Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behaviour%20of%20Nonlinear%20Systems&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Logemann,%20Hartmut&rft.date=2004-12-01&rft.volume=111&rft.issue=10&rft.spage=864&rft.epage=889&rft.pages=864-889&rft.issn=0002-9890&rft.eissn=1930-0972&rft.coden=AMMYAE&rft_id=info:doi/10.1080/00029890.2004.11920152&rft_dat=%3Cjstor_cross%3E4145095%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203743024&rft_id=info:pmid/&rft_jstor_id=4145095&rfr_iscdi=true