The loop algorithm
A review of the loop algorithm , its generalizations, and its relation to some other Monte Carlo techniques is given. The loop algorithm is a quantum Monte Carlo procedure that employs non-local changes of worldline configurations, determined by local stochastic decisions. It is based on a formulati...
Gespeichert in:
Veröffentlicht in: | Advances in physics 2003-01, Vol.52 (1), p.1-66 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A review of the loop algorithm , its generalizations, and its relation to some other Monte Carlo techniques is given. The loop algorithm is a quantum Monte Carlo procedure that employs non-local changes of worldline configurations, determined by local stochastic decisions. It is based on a formulation of quantum models of any dimension in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang algorithms. It can be represented directly on an operator level, both with a continuous imaginary time path integral and with the stochastic series expansion. It overcomes many of the difficulties of traditional worldline simulations. Autocorrelations are reduced by orders of magnitude. Grand-canonical ensembles, off-diagonal operators, and variance reduced estimators are accessible. In some cases, infinite systems can be simulated. For a restricted class of models, the fermion sign problem can be overcome. Transverse magnetic fields are handled efficiently, in contrast to strong diagonal fields. The method has been applied successfully to a variety of models for spin and charge degrees of freedom, including Heisenberg and XYZ spin models, hard-core bosons, Hubbard and t - J -models. Owing to the improved efficiency, precise calculations of asymptotic behaviour and of quantum critical exponents have been possible. |
---|---|
ISSN: | 0001-8732 1460-6976 |
DOI: | 10.1080/0001873021000049195 |