The evolution and mechanism of GPCR proton sensing

Of the 800 G protein–coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-01, Vol.296, p.100167, Article 100167
Hauptverfasser: Rowe, Jacob B., Kapolka, Nicholas J., Taghon, Geoffrey J., Morgan, William M., Isom, Daniel G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 100167
container_title The Journal of biological chemistry
container_volume 296
creator Rowe, Jacob B.
Kapolka, Nicholas J.
Taghon, Geoffrey J.
Morgan, William M.
Isom, Daniel G.
description Of the 800 G protein–coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.
doi_str_mv 10.1074/jbc.RA120.016352
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_RA120_016352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820001611</els_id><sourcerecordid>S0021925820001611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3542-5c0245fc61f1c53e246236012b36b756bfd7e788a6735347516f97c77d5a1263</originalsourceid><addsrcrecordid>eNp1j7FOwzAQhi0EoqWwM6G8QIrvHNsJW1VBQaoEqjqwWYlzpq6apLJbJN6eQICNW264__t1H2PXwKfAdXa7rex0NQPkUw5KSDxhY-C5SIWE11M25hwhLVDmI3YR45b3kxVwzkZCYJFLhDHD9YYSeu92x4Pv2qRs66QhuylbH5ukc8niZb5K9qE79MdIbfTt2yU7c-Uu0tXPnrD1w_16_pgunxdP89kytUJmmErLMZPOKnBgpSDMFArFASuhKi1V5WpNOs9LpYUUmZagXKGt1rUsAZWYMD7U2tDFGMiZffBNGT4McPNlb3p7821vBvseuRmQ_bFqqP4DfnX7wN0QoP7vd0_BROuptVT7QPZg6s7_3_4Jykpm0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The evolution and mechanism of GPCR proton sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rowe, Jacob B. ; Kapolka, Nicholas J. ; Taghon, Geoffrey J. ; Morgan, William M. ; Isom, Daniel G.</creator><creatorcontrib>Rowe, Jacob B. ; Kapolka, Nicholas J. ; Taghon, Geoffrey J. ; Morgan, William M. ; Isom, Daniel G.</creatorcontrib><description>Of the 800 G protein–coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.016352</identifier><identifier>PMID: 33298521</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>allosteric modulator ; coincidence detection ; evolution ; G protein–coupled receptor ; proton ; proton sensing ; sodium</subject><ispartof>The Journal of biological chemistry, 2021-01, Vol.296, p.100167, Article 100167</ispartof><rights>2020 The Authors</rights><rights>Published under license by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3542-5c0245fc61f1c53e246236012b36b756bfd7e788a6735347516f97c77d5a1263</citedby><cites>FETCH-LOGICAL-c3542-5c0245fc61f1c53e246236012b36b756bfd7e788a6735347516f97c77d5a1263</cites><orcidid>0000-0001-7147-5407 ; 0000-0002-5350-5075 ; 0000-0003-2223-8207 ; 0000-0001-5637-2370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33298521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowe, Jacob B.</creatorcontrib><creatorcontrib>Kapolka, Nicholas J.</creatorcontrib><creatorcontrib>Taghon, Geoffrey J.</creatorcontrib><creatorcontrib>Morgan, William M.</creatorcontrib><creatorcontrib>Isom, Daniel G.</creatorcontrib><title>The evolution and mechanism of GPCR proton sensing</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Of the 800 G protein–coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.</description><subject>allosteric modulator</subject><subject>coincidence detection</subject><subject>evolution</subject><subject>G protein–coupled receptor</subject><subject>proton</subject><subject>proton sensing</subject><subject>sodium</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j7FOwzAQhi0EoqWwM6G8QIrvHNsJW1VBQaoEqjqwWYlzpq6apLJbJN6eQICNW264__t1H2PXwKfAdXa7rex0NQPkUw5KSDxhY-C5SIWE11M25hwhLVDmI3YR45b3kxVwzkZCYJFLhDHD9YYSeu92x4Pv2qRs66QhuylbH5ukc8niZb5K9qE79MdIbfTt2yU7c-Uu0tXPnrD1w_16_pgunxdP89kytUJmmErLMZPOKnBgpSDMFArFASuhKi1V5WpNOs9LpYUUmZagXKGt1rUsAZWYMD7U2tDFGMiZffBNGT4McPNlb3p7821vBvseuRmQ_bFqqP4DfnX7wN0QoP7vd0_BROuptVT7QPZg6s7_3_4Jykpm0Q</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Rowe, Jacob B.</creator><creator>Kapolka, Nicholas J.</creator><creator>Taghon, Geoffrey J.</creator><creator>Morgan, William M.</creator><creator>Isom, Daniel G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7147-5407</orcidid><orcidid>https://orcid.org/0000-0002-5350-5075</orcidid><orcidid>https://orcid.org/0000-0003-2223-8207</orcidid><orcidid>https://orcid.org/0000-0001-5637-2370</orcidid></search><sort><creationdate>20210101</creationdate><title>The evolution and mechanism of GPCR proton sensing</title><author>Rowe, Jacob B. ; Kapolka, Nicholas J. ; Taghon, Geoffrey J. ; Morgan, William M. ; Isom, Daniel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3542-5c0245fc61f1c53e246236012b36b756bfd7e788a6735347516f97c77d5a1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>allosteric modulator</topic><topic>coincidence detection</topic><topic>evolution</topic><topic>G protein–coupled receptor</topic><topic>proton</topic><topic>proton sensing</topic><topic>sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowe, Jacob B.</creatorcontrib><creatorcontrib>Kapolka, Nicholas J.</creatorcontrib><creatorcontrib>Taghon, Geoffrey J.</creatorcontrib><creatorcontrib>Morgan, William M.</creatorcontrib><creatorcontrib>Isom, Daniel G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowe, Jacob B.</au><au>Kapolka, Nicholas J.</au><au>Taghon, Geoffrey J.</au><au>Morgan, William M.</au><au>Isom, Daniel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution and mechanism of GPCR proton sensing</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>296</volume><spage>100167</spage><pages>100167-</pages><artnum>100167</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Of the 800 G protein–coupled receptors (GPCRs) in humans, only three (GPR4, GPR65, and GPR68) regulate signaling in acidified microenvironments by sensing protons (H+). How these receptors have uniquely obtained this ability is unknown. Here, we show these receptors evolved the capability to sense H+ signals by acquiring buried acidic residues. Using our informatics platform pHinder, we identified a triad of buried acidic residues shared by all three receptors, a feature distinct from all other human GPCRs. Phylogenetic analysis shows the triad emerged in GPR65, the immediate ancestor of GPR4 and GPR68. To understand the evolutionary and mechanistic importance of these triad residues, we developed deep variant profiling, a yeast-based technology that utilizes high-throughput CRISPR to build and profile large libraries of GPCR variants. Using deep variant profiling and GPCR assays in HEK293 cells, we assessed the pH-sensing contributions of each triad residue in all three receptors. As predicted by our calculations, most triad mutations had profound effects consistent with direct regulation of receptor pH sensing. In addition, we found that an allosteric modulator of many class A GPCRs, Na+, synergistically regulated pH sensing by maintaining the pKa values of triad residues within the physiologically relevant pH range. As such, we show that all three receptors function as coincidence detectors of H+ and Na+. Taken together, these findings elucidate the molecular evolution and long-sought mechanism of GPR4, GPR65, and GPR68 pH sensing and provide pH-insensitive variants that should be valuable for assessing the therapeutic potential and (patho)physiological importance of GPCR pH sensing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33298521</pmid><doi>10.1074/jbc.RA120.016352</doi><orcidid>https://orcid.org/0000-0001-7147-5407</orcidid><orcidid>https://orcid.org/0000-0002-5350-5075</orcidid><orcidid>https://orcid.org/0000-0003-2223-8207</orcidid><orcidid>https://orcid.org/0000-0001-5637-2370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-01, Vol.296, p.100167, Article 100167
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_RA120_016352
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects allosteric modulator
coincidence detection
evolution
G protein–coupled receptor
proton
proton sensing
sodium
title The evolution and mechanism of GPCR proton sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20and%20mechanism%20of%20GPCR%20proton%20sensing&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Rowe,%20Jacob%20B.&rft.date=2021-01-01&rft.volume=296&rft.spage=100167&rft.pages=100167-&rft.artnum=100167&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.016352&rft_dat=%3Celsevier_cross%3ES0021925820001611%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33298521&rft_els_id=S0021925820001611&rfr_iscdi=true