Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway
Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-01, Vol.284 (3), p.1612-1619 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1619 |
---|---|
container_issue | 3 |
container_start_page | 1612 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Nakayama, Masaaki Hisatsune, Junzo Yamasaki, Eiki Isomoto, Hajime Kurazono, Hisao Hatakeyama, Masanori Azuma, Takeshi Yamaoka, Yoshio Yahiro, Kinnosuke Moss, Joel Hirayama, Toshiya |
description | Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation and inhibition of GSK3β,β-catenin was released from a GSK3β/β-catenin complex, with subsequent nuclear translocation. Methyl-β-cyclodextrin (MCD) and phosphatidylinositol-specific phospholipase C (PI-PLC), but not 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and bafilomycin A1, inhibited VacA-induced phosphorylation of Akt, indicating that it does not require VacA internalization and is independent of vacuolation. VacA treatment of AZ-521 cells transfected with TOPtkLuciferase reporter plasmid or control FOPtkLucifease reporter plasmid resulted in activation of TOPtkLuciferase, but not FOPtkLucifease. In addition, VacA transactivated the β-catenin-dependent cyclin D1 promoter in a luciferase reporter assay. Infection of AZ-521 cells by a vacA mutant strain of H. pylori failed to induce phosphorylation of Akt and GSK3β, or release of β-catenin from a GSK3β/β-catenin complex. Taken together, these results support the conclusion that VacA activates the PI3K/Akt signaling pathway, resulting in phosphorylation and inhibition of GSK3β, and subsequent translocation ofβ-catenin to the nucleus, consistent with effects of VacA on β-catenin-regulated transcriptional activity. These data introduce the possibility that Wnt-dependent signaling might play a role in the pathogenesis of H. pylori infection, including the development of gastric cancer. |
doi_str_mv | 10.1074/jbc.M806981200 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M806981200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819821774</els_id><sourcerecordid>18996844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-16c0d9ddc90c0601e374d8a9cc86d6ce77e2194d70d5a510738590819370e6243</originalsourceid><addsrcrecordid>eNp1kE1P4zAQhi3ECrrAleNicU-ZiZ3EPlaIjwpWi9QFIS6WY7uJ2TaunHRR_z1mg8Rp5zKX552Ph5BThClCxS9eazP9KaCUAnOAPTJBECxjBT7vkwlAjpnMC3FIvvf9K6TiEg_IIQopS8H5hLzcupU3odZmcJFudqsQPX3SZpb5zm6Ns3Tetb72gw8dDUt6s7hjdGhj2DZt6o4-zNndxezPQBe-6fTKdw190EP7pnfH5NtSr3p38tmPyOP11e_L2-z-1838cnafGS7lkGFpwEprjQQDJaBjFbdCS2NEaUvjqsrlKLmtwBa6SE8zUUgQKFkFrsw5OyLTca6Joe-jW6pN9GsddwpBfUhSSZL6kpQCP8bAZluvnf3CP60k4HwEWt-0bz46VftgWrdWueCKKSwxT9DZCC11ULqJvlePixyQARaV5P_2iJFw6fu_3kXVG--6JDWNNIOywf_vxHeurIhd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Nakayama, Masaaki ; Hisatsune, Junzo ; Yamasaki, Eiki ; Isomoto, Hajime ; Kurazono, Hisao ; Hatakeyama, Masanori ; Azuma, Takeshi ; Yamaoka, Yoshio ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creator><creatorcontrib>Nakayama, Masaaki ; Hisatsune, Junzo ; Yamasaki, Eiki ; Isomoto, Hajime ; Kurazono, Hisao ; Hatakeyama, Masanori ; Azuma, Takeshi ; Yamaoka, Yoshio ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</creatorcontrib><description>Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation and inhibition of GSK3β,β-catenin was released from a GSK3β/β-catenin complex, with subsequent nuclear translocation. Methyl-β-cyclodextrin (MCD) and phosphatidylinositol-specific phospholipase C (PI-PLC), but not 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and bafilomycin A1, inhibited VacA-induced phosphorylation of Akt, indicating that it does not require VacA internalization and is independent of vacuolation. VacA treatment of AZ-521 cells transfected with TOPtkLuciferase reporter plasmid or control FOPtkLucifease reporter plasmid resulted in activation of TOPtkLuciferase, but not FOPtkLucifease. In addition, VacA transactivated the β-catenin-dependent cyclin D1 promoter in a luciferase reporter assay. Infection of AZ-521 cells by a vacA mutant strain of H. pylori failed to induce phosphorylation of Akt and GSK3β, or release of β-catenin from a GSK3β/β-catenin complex. Taken together, these results support the conclusion that VacA activates the PI3K/Akt signaling pathway, resulting in phosphorylation and inhibition of GSK3β, and subsequent translocation ofβ-catenin to the nucleus, consistent with effects of VacA on β-catenin-regulated transcriptional activity. These data introduce the possibility that Wnt-dependent signaling might play a role in the pathogenesis of H. pylori infection, including the development of gastric cancer.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M806981200</identifier><identifier>PMID: 18996844</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Active Transport, Cell Nucleus - drug effects ; Bacterial Proteins - toxicity ; beta Catenin - genetics ; beta Catenin - metabolism ; Cell Line, Tumor ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cyclin D1 - genetics ; Cyclin D1 - metabolism ; Enzyme Inhibitors - pharmacology ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Glycogen Synthase Kinase 3 beta ; Helicobacter Infections - enzymology ; Helicobacter Infections - genetics ; Helicobacter pylori ; Humans ; Mutation ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phospholipase C beta - genetics ; Phospholipase C beta - metabolism ; Phosphorylation - drug effects ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction - drug effects ; Stomach Neoplasms - enzymology ; Stomach Neoplasms - genetics ; Stomach Neoplasms - microbiology ; Transcriptional Activation - drug effects ; Wnt Proteins</subject><ispartof>The Journal of biological chemistry, 2009-01, Vol.284 (3), p.1612-1619</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-16c0d9ddc90c0601e374d8a9cc86d6ce77e2194d70d5a510738590819370e6243</citedby><cites>FETCH-LOGICAL-c499t-16c0d9ddc90c0601e374d8a9cc86d6ce77e2194d70d5a510738590819370e6243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18996844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Junzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Isomoto, Hajime</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Hatakeyama, Masanori</creatorcontrib><creatorcontrib>Azuma, Takeshi</creatorcontrib><creatorcontrib>Yamaoka, Yoshio</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><title>Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation and inhibition of GSK3β,β-catenin was released from a GSK3β/β-catenin complex, with subsequent nuclear translocation. Methyl-β-cyclodextrin (MCD) and phosphatidylinositol-specific phospholipase C (PI-PLC), but not 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and bafilomycin A1, inhibited VacA-induced phosphorylation of Akt, indicating that it does not require VacA internalization and is independent of vacuolation. VacA treatment of AZ-521 cells transfected with TOPtkLuciferase reporter plasmid or control FOPtkLucifease reporter plasmid resulted in activation of TOPtkLuciferase, but not FOPtkLucifease. In addition, VacA transactivated the β-catenin-dependent cyclin D1 promoter in a luciferase reporter assay. Infection of AZ-521 cells by a vacA mutant strain of H. pylori failed to induce phosphorylation of Akt and GSK3β, or release of β-catenin from a GSK3β/β-catenin complex. Taken together, these results support the conclusion that VacA activates the PI3K/Akt signaling pathway, resulting in phosphorylation and inhibition of GSK3β, and subsequent translocation ofβ-catenin to the nucleus, consistent with effects of VacA on β-catenin-regulated transcriptional activity. These data introduce the possibility that Wnt-dependent signaling might play a role in the pathogenesis of H. pylori infection, including the development of gastric cancer.</description><subject>Active Transport, Cell Nucleus - drug effects</subject><subject>Bacterial Proteins - toxicity</subject><subject>beta Catenin - genetics</subject><subject>beta Catenin - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cyclin D1 - genetics</subject><subject>Cyclin D1 - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>Helicobacter Infections - enzymology</subject><subject>Helicobacter Infections - genetics</subject><subject>Helicobacter pylori</subject><subject>Humans</subject><subject>Mutation</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phospholipase C beta - genetics</subject><subject>Phospholipase C beta - metabolism</subject><subject>Phosphorylation - drug effects</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Stomach Neoplasms - enzymology</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - microbiology</subject><subject>Transcriptional Activation - drug effects</subject><subject>Wnt Proteins</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P4zAQhi3ECrrAleNicU-ZiZ3EPlaIjwpWi9QFIS6WY7uJ2TaunHRR_z1mg8Rp5zKX552Ph5BThClCxS9eazP9KaCUAnOAPTJBECxjBT7vkwlAjpnMC3FIvvf9K6TiEg_IIQopS8H5hLzcupU3odZmcJFudqsQPX3SZpb5zm6Ns3Tetb72gw8dDUt6s7hjdGhj2DZt6o4-zNndxezPQBe-6fTKdw190EP7pnfH5NtSr3p38tmPyOP11e_L2-z-1838cnafGS7lkGFpwEprjQQDJaBjFbdCS2NEaUvjqsrlKLmtwBa6SE8zUUgQKFkFrsw5OyLTca6Joe-jW6pN9GsddwpBfUhSSZL6kpQCP8bAZluvnf3CP60k4HwEWt-0bz46VftgWrdWueCKKSwxT9DZCC11ULqJvlePixyQARaV5P_2iJFw6fu_3kXVG--6JDWNNIOywf_vxHeurIhd</recordid><startdate>20090116</startdate><enddate>20090116</enddate><creator>Nakayama, Masaaki</creator><creator>Hisatsune, Junzo</creator><creator>Yamasaki, Eiki</creator><creator>Isomoto, Hajime</creator><creator>Kurazono, Hisao</creator><creator>Hatakeyama, Masanori</creator><creator>Azuma, Takeshi</creator><creator>Yamaoka, Yoshio</creator><creator>Yahiro, Kinnosuke</creator><creator>Moss, Joel</creator><creator>Hirayama, Toshiya</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090116</creationdate><title>Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway</title><author>Nakayama, Masaaki ; Hisatsune, Junzo ; Yamasaki, Eiki ; Isomoto, Hajime ; Kurazono, Hisao ; Hatakeyama, Masanori ; Azuma, Takeshi ; Yamaoka, Yoshio ; Yahiro, Kinnosuke ; Moss, Joel ; Hirayama, Toshiya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-16c0d9ddc90c0601e374d8a9cc86d6ce77e2194d70d5a510738590819370e6243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active Transport, Cell Nucleus - drug effects</topic><topic>Bacterial Proteins - toxicity</topic><topic>beta Catenin - genetics</topic><topic>beta Catenin - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cyclin D1 - genetics</topic><topic>Cyclin D1 - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>Helicobacter Infections - enzymology</topic><topic>Helicobacter Infections - genetics</topic><topic>Helicobacter pylori</topic><topic>Humans</topic><topic>Mutation</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phospholipase C beta - genetics</topic><topic>Phospholipase C beta - metabolism</topic><topic>Phosphorylation - drug effects</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Stomach Neoplasms - enzymology</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - microbiology</topic><topic>Transcriptional Activation - drug effects</topic><topic>Wnt Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Masaaki</creatorcontrib><creatorcontrib>Hisatsune, Junzo</creatorcontrib><creatorcontrib>Yamasaki, Eiki</creatorcontrib><creatorcontrib>Isomoto, Hajime</creatorcontrib><creatorcontrib>Kurazono, Hisao</creatorcontrib><creatorcontrib>Hatakeyama, Masanori</creatorcontrib><creatorcontrib>Azuma, Takeshi</creatorcontrib><creatorcontrib>Yamaoka, Yoshio</creatorcontrib><creatorcontrib>Yahiro, Kinnosuke</creatorcontrib><creatorcontrib>Moss, Joel</creatorcontrib><creatorcontrib>Hirayama, Toshiya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Masaaki</au><au>Hisatsune, Junzo</au><au>Yamasaki, Eiki</au><au>Isomoto, Hajime</au><au>Kurazono, Hisao</au><au>Hatakeyama, Masanori</au><au>Azuma, Takeshi</au><au>Yamaoka, Yoshio</au><au>Yahiro, Kinnosuke</au><au>Moss, Joel</au><au>Hirayama, Toshiya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-01-16</date><risdate>2009</risdate><volume>284</volume><issue>3</issue><spage>1612</spage><epage>1619</epage><pages>1612-1619</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Helicobacter pylori VacA toxin contributes to the pathogenesis and severity of gastric injury. We found that incubation of AZ-521 cells with VacA resulted in phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3β (GSK3β) through a PI3K-dependent pathway. Following phosphorylation and inhibition of GSK3β,β-catenin was released from a GSK3β/β-catenin complex, with subsequent nuclear translocation. Methyl-β-cyclodextrin (MCD) and phosphatidylinositol-specific phospholipase C (PI-PLC), but not 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and bafilomycin A1, inhibited VacA-induced phosphorylation of Akt, indicating that it does not require VacA internalization and is independent of vacuolation. VacA treatment of AZ-521 cells transfected with TOPtkLuciferase reporter plasmid or control FOPtkLucifease reporter plasmid resulted in activation of TOPtkLuciferase, but not FOPtkLucifease. In addition, VacA transactivated the β-catenin-dependent cyclin D1 promoter in a luciferase reporter assay. Infection of AZ-521 cells by a vacA mutant strain of H. pylori failed to induce phosphorylation of Akt and GSK3β, or release of β-catenin from a GSK3β/β-catenin complex. Taken together, these results support the conclusion that VacA activates the PI3K/Akt signaling pathway, resulting in phosphorylation and inhibition of GSK3β, and subsequent translocation ofβ-catenin to the nucleus, consistent with effects of VacA on β-catenin-regulated transcriptional activity. These data introduce the possibility that Wnt-dependent signaling might play a role in the pathogenesis of H. pylori infection, including the development of gastric cancer.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18996844</pmid><doi>10.1074/jbc.M806981200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-01, Vol.284 (3), p.1612-1619 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_crossref_primary_10_1074_jbc_M806981200 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Active Transport, Cell Nucleus - drug effects Bacterial Proteins - toxicity beta Catenin - genetics beta Catenin - metabolism Cell Line, Tumor Cell Nucleus - enzymology Cell Nucleus - genetics Cyclin D1 - genetics Cyclin D1 - metabolism Enzyme Inhibitors - pharmacology Glycogen Synthase Kinase 3 - genetics Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Helicobacter Infections - enzymology Helicobacter Infections - genetics Helicobacter pylori Humans Mutation Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Phospholipase C beta - genetics Phospholipase C beta - metabolism Phosphorylation - drug effects Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Signal Transduction - drug effects Stomach Neoplasms - enzymology Stomach Neoplasms - genetics Stomach Neoplasms - microbiology Transcriptional Activation - drug effects Wnt Proteins |
title | Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Helicobacter%20pylori%20VacA-induced%20Inhibition%20of%20GSK3%20through%20the%20PI3K/Akt%20Signaling%20Pathway&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Nakayama,%20Masaaki&rft.date=2009-01-16&rft.volume=284&rft.issue=3&rft.spage=1612&rft.epage=1619&rft.pages=1612-1619&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M806981200&rft_dat=%3Cpubmed_cross%3E18996844%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18996844&rft_els_id=S0021925819821774&rfr_iscdi=true |