Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain

Genotoxic stress triggers a rapid translocation of p53 to the mitochondria, contributing to apoptosis in a transcription-independent manner. Using immunopurification protocols and mass spectrometry, we previously identified the proapoptotic protein BAK as a mitochondrial p53-binding protein and show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-07, Vol.283 (30), p.21294-21304
Hauptverfasser: Pietsch, E. Christine, Perchiniak, Erin, Canutescu, Adrian A., Wang, Guoli, Dunbrack, Roland L., Murphy, Maureen E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21304
container_issue 30
container_start_page 21294
container_title The Journal of biological chemistry
container_volume 283
creator Pietsch, E. Christine
Perchiniak, Erin
Canutescu, Adrian A.
Wang, Guoli
Dunbrack, Roland L.
Murphy, Maureen E.
description Genotoxic stress triggers a rapid translocation of p53 to the mitochondria, contributing to apoptosis in a transcription-independent manner. Using immunopurification protocols and mass spectrometry, we previously identified the proapoptotic protein BAK as a mitochondrial p53-binding protein and showed that recombinant p53 directly binds to BAK and can induce its oligomerization, leading to cytochrome c release. In this work we describe a combination of molecular modeling, electrostatic analysis, and site-directed mutagenesis to define contact residues between BAK and p53. Our data indicate that three regions within the core DNA binding domain of p53 make contact with BAK; these are the conserved H2 α-helix and the L1 and L3 loop. Notably, point mutations in these regions markedly impair the ability of p53 to oligomerize BAK and to induce transcription-independent cell death. We present a model whereby positively charged residues within the H2 helix and L1 loop of p53 interact with an electronegative domain on the N-terminal α-helix of BAK; the latter is known to undergo conformational changes upon BAK activation. We show that mutation of acidic residues in the N-terminal helix impair the ability of BAK to bind to p53. Interestingly, many of the p53 contact residues predicted by our model are also direct DNA contact residues, suggesting that p53 interacts with BAK in a manner analogous to DNA. The combined data point to the H2 helix and L1 and L3 loops of p53 as novel functional domains contributing to transcription-independent apoptosis by this tumor suppressor protein.
doi_str_mv 10.1074/jbc.M710539200
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M710539200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819547524</els_id><sourcerecordid>18524770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-ff59e470ccda989733ce91c302776d2d8af64e61a64694728ae1648d1023cc153</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhi0EokvhyhFy4JrFH_HXBWm7pYAoVAJWcLO89iRxtYlXdrqo_fU1pKJwwJeR7Gfe8TwIPSd4SbBsXl9u3fKTJJgzTTF-gBYEK1YzTn48RAuMKak15eoIPcn5EpfTaPIYHRHFaSMlXqDvF7vQxQFSuLFTiGMV2-pk9bHaXld7zqrNFHbhBnK1jmOGdABffYEc_FW5KuTUw2_s9POqOgmjD2NXncbBhvEpetTaXYZnd_UYbc7eflu_r88v3n1Yr85rx7mY6rblGhqJnfNWKy0Zc6CJY5hKKTz1yraiAUGsaIRuJFUWiGiUJ5gy5whnx-jNnLu_2g7gHYxTsjuzT2Gw6dpEG8y_L2PoTRcPpuzPJRYlYDkHuBRzTtD-6SXY_FJsimJzr7g0vPh74j1-57QAr2agD13_MyQw2xBdD4OhihmGDSVUNwV7OWOtjcZ2KWSz-UoxYRhrIpiQhVAzAUXgIUAy2QUYHfgS6ibjY_jfJ28BckKecA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pietsch, E. Christine ; Perchiniak, Erin ; Canutescu, Adrian A. ; Wang, Guoli ; Dunbrack, Roland L. ; Murphy, Maureen E.</creator><creatorcontrib>Pietsch, E. Christine ; Perchiniak, Erin ; Canutescu, Adrian A. ; Wang, Guoli ; Dunbrack, Roland L. ; Murphy, Maureen E.</creatorcontrib><description>Genotoxic stress triggers a rapid translocation of p53 to the mitochondria, contributing to apoptosis in a transcription-independent manner. Using immunopurification protocols and mass spectrometry, we previously identified the proapoptotic protein BAK as a mitochondrial p53-binding protein and showed that recombinant p53 directly binds to BAK and can induce its oligomerization, leading to cytochrome c release. In this work we describe a combination of molecular modeling, electrostatic analysis, and site-directed mutagenesis to define contact residues between BAK and p53. Our data indicate that three regions within the core DNA binding domain of p53 make contact with BAK; these are the conserved H2 α-helix and the L1 and L3 loop. Notably, point mutations in these regions markedly impair the ability of p53 to oligomerize BAK and to induce transcription-independent cell death. We present a model whereby positively charged residues within the H2 helix and L1 loop of p53 interact with an electronegative domain on the N-terminal α-helix of BAK; the latter is known to undergo conformational changes upon BAK activation. We show that mutation of acidic residues in the N-terminal helix impair the ability of BAK to bind to p53. Interestingly, many of the p53 contact residues predicted by our model are also direct DNA contact residues, suggesting that p53 interacts with BAK in a manner analogous to DNA. The combined data point to the H2 helix and L1 and L3 loops of p53 as novel functional domains contributing to transcription-independent apoptosis by this tumor suppressor protein.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M710539200</identifier><identifier>PMID: 18524770</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; bcl-2 Homologous Antagonist-Killer Protein - chemistry ; bcl-2 Homologous Antagonist-Killer Protein - metabolism ; Caenorhabditis elegans ; Cell Line, Tumor ; Fibroblasts - metabolism ; Humans ; Mechanisms of Signal Transduction ; Mice ; Mitochondria - metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Tumor Suppressor Protein p53 - chemistry</subject><ispartof>The Journal of biological chemistry, 2008-07, Vol.283 (30), p.21294-21304</ispartof><rights>2008 © 2008 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc. 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-ff59e470ccda989733ce91c302776d2d8af64e61a64694728ae1648d1023cc153</citedby><cites>FETCH-LOGICAL-c556t-ff59e470ccda989733ce91c302776d2d8af64e61a64694728ae1648d1023cc153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475706/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475706/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18524770$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pietsch, E. Christine</creatorcontrib><creatorcontrib>Perchiniak, Erin</creatorcontrib><creatorcontrib>Canutescu, Adrian A.</creatorcontrib><creatorcontrib>Wang, Guoli</creatorcontrib><creatorcontrib>Dunbrack, Roland L.</creatorcontrib><creatorcontrib>Murphy, Maureen E.</creatorcontrib><title>Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Genotoxic stress triggers a rapid translocation of p53 to the mitochondria, contributing to apoptosis in a transcription-independent manner. Using immunopurification protocols and mass spectrometry, we previously identified the proapoptotic protein BAK as a mitochondrial p53-binding protein and showed that recombinant p53 directly binds to BAK and can induce its oligomerization, leading to cytochrome c release. In this work we describe a combination of molecular modeling, electrostatic analysis, and site-directed mutagenesis to define contact residues between BAK and p53. Our data indicate that three regions within the core DNA binding domain of p53 make contact with BAK; these are the conserved H2 α-helix and the L1 and L3 loop. Notably, point mutations in these regions markedly impair the ability of p53 to oligomerize BAK and to induce transcription-independent cell death. We present a model whereby positively charged residues within the H2 helix and L1 loop of p53 interact with an electronegative domain on the N-terminal α-helix of BAK; the latter is known to undergo conformational changes upon BAK activation. We show that mutation of acidic residues in the N-terminal helix impair the ability of BAK to bind to p53. Interestingly, many of the p53 contact residues predicted by our model are also direct DNA contact residues, suggesting that p53 interacts with BAK in a manner analogous to DNA. The combined data point to the H2 helix and L1 and L3 loops of p53 as novel functional domains contributing to transcription-independent apoptosis by this tumor suppressor protein.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - chemistry</subject><subject>bcl-2 Homologous Antagonist-Killer Protein - metabolism</subject><subject>Caenorhabditis elegans</subject><subject>Cell Line, Tumor</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Mechanisms of Signal Transduction</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1v1DAQhi0EokvhyhFy4JrFH_HXBWm7pYAoVAJWcLO89iRxtYlXdrqo_fU1pKJwwJeR7Gfe8TwIPSd4SbBsXl9u3fKTJJgzTTF-gBYEK1YzTn48RAuMKak15eoIPcn5EpfTaPIYHRHFaSMlXqDvF7vQxQFSuLFTiGMV2-pk9bHaXld7zqrNFHbhBnK1jmOGdABffYEc_FW5KuTUw2_s9POqOgmjD2NXncbBhvEpetTaXYZnd_UYbc7eflu_r88v3n1Yr85rx7mY6rblGhqJnfNWKy0Zc6CJY5hKKTz1yraiAUGsaIRuJFUWiGiUJ5gy5whnx-jNnLu_2g7gHYxTsjuzT2Gw6dpEG8y_L2PoTRcPpuzPJRYlYDkHuBRzTtD-6SXY_FJsimJzr7g0vPh74j1-57QAr2agD13_MyQw2xBdD4OhihmGDSVUNwV7OWOtjcZ2KWSz-UoxYRhrIpiQhVAzAUXgIUAy2QUYHfgS6ibjY_jfJ28BckKecA</recordid><startdate>20080725</startdate><enddate>20080725</enddate><creator>Pietsch, E. Christine</creator><creator>Perchiniak, Erin</creator><creator>Canutescu, Adrian A.</creator><creator>Wang, Guoli</creator><creator>Dunbrack, Roland L.</creator><creator>Murphy, Maureen E.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080725</creationdate><title>Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain</title><author>Pietsch, E. Christine ; Perchiniak, Erin ; Canutescu, Adrian A. ; Wang, Guoli ; Dunbrack, Roland L. ; Murphy, Maureen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-ff59e470ccda989733ce91c302776d2d8af64e61a64694728ae1648d1023cc153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - chemistry</topic><topic>bcl-2 Homologous Antagonist-Killer Protein - metabolism</topic><topic>Caenorhabditis elegans</topic><topic>Cell Line, Tumor</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Mechanisms of Signal Transduction</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pietsch, E. Christine</creatorcontrib><creatorcontrib>Perchiniak, Erin</creatorcontrib><creatorcontrib>Canutescu, Adrian A.</creatorcontrib><creatorcontrib>Wang, Guoli</creatorcontrib><creatorcontrib>Dunbrack, Roland L.</creatorcontrib><creatorcontrib>Murphy, Maureen E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pietsch, E. Christine</au><au>Perchiniak, Erin</au><au>Canutescu, Adrian A.</au><au>Wang, Guoli</au><au>Dunbrack, Roland L.</au><au>Murphy, Maureen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2008-07-25</date><risdate>2008</risdate><volume>283</volume><issue>30</issue><spage>21294</spage><epage>21304</epage><pages>21294-21304</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Genotoxic stress triggers a rapid translocation of p53 to the mitochondria, contributing to apoptosis in a transcription-independent manner. Using immunopurification protocols and mass spectrometry, we previously identified the proapoptotic protein BAK as a mitochondrial p53-binding protein and showed that recombinant p53 directly binds to BAK and can induce its oligomerization, leading to cytochrome c release. In this work we describe a combination of molecular modeling, electrostatic analysis, and site-directed mutagenesis to define contact residues between BAK and p53. Our data indicate that three regions within the core DNA binding domain of p53 make contact with BAK; these are the conserved H2 α-helix and the L1 and L3 loop. Notably, point mutations in these regions markedly impair the ability of p53 to oligomerize BAK and to induce transcription-independent cell death. We present a model whereby positively charged residues within the H2 helix and L1 loop of p53 interact with an electronegative domain on the N-terminal α-helix of BAK; the latter is known to undergo conformational changes upon BAK activation. We show that mutation of acidic residues in the N-terminal helix impair the ability of BAK to bind to p53. Interestingly, many of the p53 contact residues predicted by our model are also direct DNA contact residues, suggesting that p53 interacts with BAK in a manner analogous to DNA. The combined data point to the H2 helix and L1 and L3 loops of p53 as novel functional domains contributing to transcription-independent apoptosis by this tumor suppressor protein.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18524770</pmid><doi>10.1074/jbc.M710539200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2008-07, Vol.283 (30), p.21294-21304
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M710539200
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Apoptosis
bcl-2 Homologous Antagonist-Killer Protein - chemistry
bcl-2 Homologous Antagonist-Killer Protein - metabolism
Caenorhabditis elegans
Cell Line, Tumor
Fibroblasts - metabolism
Humans
Mechanisms of Signal Transduction
Mice
Mitochondria - metabolism
Models, Biological
Mutagenesis, Site-Directed
Protein Binding
Protein Conformation
Protein Structure, Tertiary
Tumor Suppressor Protein p53 - chemistry
title Oligomerization of BAK by p53 Utilizes Conserved Residues of the p53 DNA Binding Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligomerization%20of%20BAK%20by%20p53%20Utilizes%20Conserved%20Residues%20of%20the%20p53%20DNA%20Binding%20Domain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Pietsch,%20E.%20Christine&rft.date=2008-07-25&rft.volume=283&rft.issue=30&rft.spage=21294&rft.epage=21304&rft.pages=21294-21304&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M710539200&rft_dat=%3Cpubmed_cross%3E18524770%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18524770&rft_els_id=S0021925819547524&rfr_iscdi=true