cAMP-dependent Protein Kinase Phosphorylation Produces Interdomain Movement in SUR2B Leading to Activation of the Vascular KATP Channel

Vascular ATP-sensitive K+ channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD2) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2008-03, Vol.283 (12), p.7523-7530
Hauptverfasser: Shi, Yun, Chen, Xianfeng, Wu, Zhongying, Shi, Weiwei, Yang, Yang, Cui, Ningren, Jiang, Chun, Harrison, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vascular ATP-sensitive K+ channels are activated by multiple vasodilating hormones and neurotransmitters via PKA. A critical PKA phosphorylation site (Ser-1387) is found in the second nucleotide-binding domain (NBD2) of the SUR2B subunit. To understand how phosphorylation at Ser-1387 leads to changes in channel activity, we modeled the SUR2B using a newly crystallized ABC protein SAV1866. The model showed that Ser-1387 was located on the interface of NBD2 with TMD1 and physically interacted with Tyr-506 in TMD1. A positively charged residue (Arg-1462) in NBD2 was revealed in the close vicinity of Ser-1387. Mutation of either of these three residues abolished PKA-dependent channel activation. Molecular dynamics simulations suggested that Ser-1387, Tyr-506, and Arg-1462 formed a compact triad upon Ser-1387 phosphorylation, leading to reshaping of the NBD2 interface and movements of NBD2 and TMD1. Restriction of the interdomain movements by engineering a disulfide bond between TMD1 and NBD2 prevented the channel activation in a redox-dependent manner. Thus, a channel-gating mechanism is suggested through enhancing the NBD-TMD coupling efficiency following Ser-1387 phosphorylation, which is shared by multiple vasodilators.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M709941200