Molecular Basis of Cysteine Biosynthesis in Plants

In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylseri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2005-11, Vol.280 (46), p.38803-38813
Hauptverfasser: Bonner, Eric R., Cahoon, Rebecca E., Knapke, Sarah M., Jez, Joseph M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38813
container_issue 46
container_start_page 38803
container_title The Journal of biological chemistry
container_volume 280
creator Bonner, Eric R.
Cahoon, Rebecca E.
Knapke, Sarah M.
Jez, Joseph M.
description In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 Å resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 Å resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn77 and Gln147 are key amino acids for O-acetylserine binding and that Thr74 and Ser75 are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved β8A-β9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.
doi_str_mv 10.1074/jbc.M505313200
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M505313200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819377476</els_id><sourcerecordid>S0021925819377476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2680-8f9f03776029a9e36589c1b16054b1f5826297c1675f9521acbc90c651c9a6a63</originalsourceid><addsrcrecordid>eNp1jz1PwzAQhi0EoqWwMmdgTbizY8ceacWX1AoGkNgsx7WJqzRBdgD135OqSEzccsO9z909hFwiFAhVeb2pbbHiwBkyCnBEpgiS5Yzj2zGZAlDMFeVyQs5S2sBYpcJTMkGBQoCspoSu-tbZz9bEbG5SSFnvs8UuDS50LpuHPu26oXH7Qeiy59Z0QzonJ960yV389hl5vbt9WTzky6f7x8XNMrdUSMilVx5YVQmgyijHBJfKYo0CeFmj55IKqiqLouJecYrG1laBFRytMsIINiPFYa-NfUrRef0Rw9bEnUbQe3k9yus_-RG4OgBNeG--Q3S6Dr1t3FZTCboUmkkJbIzJQ8yNz38FF3WywXXWrUfEDnrdh_8u_ACyQmes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Basis of Cysteine Biosynthesis in Plants</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bonner, Eric R. ; Cahoon, Rebecca E. ; Knapke, Sarah M. ; Jez, Joseph M.</creator><creatorcontrib>Bonner, Eric R. ; Cahoon, Rebecca E. ; Knapke, Sarah M. ; Jez, Joseph M.</creatorcontrib><description>In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 Å resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 Å resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn77 and Gln147 are key amino acids for O-acetylserine binding and that Thr74 and Ser75 are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved β8A-β9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M505313200</identifier><identifier>PMID: 16166087</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2005-11, Vol.280 (46), p.38803-38813</ispartof><rights>2005 © 2005 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2680-8f9f03776029a9e36589c1b16054b1f5826297c1675f9521acbc90c651c9a6a63</citedby><cites>FETCH-LOGICAL-c2680-8f9f03776029a9e36589c1b16054b1f5826297c1675f9521acbc90c651c9a6a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bonner, Eric R.</creatorcontrib><creatorcontrib>Cahoon, Rebecca E.</creatorcontrib><creatorcontrib>Knapke, Sarah M.</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><title>Molecular Basis of Cysteine Biosynthesis in Plants</title><title>The Journal of biological chemistry</title><description>In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 Å resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 Å resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn77 and Gln147 are key amino acids for O-acetylserine binding and that Thr74 and Ser75 are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved β8A-β9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAQhi0EoqWwMmdgTbizY8ceacWX1AoGkNgsx7WJqzRBdgD135OqSEzccsO9z909hFwiFAhVeb2pbbHiwBkyCnBEpgiS5Yzj2zGZAlDMFeVyQs5S2sBYpcJTMkGBQoCspoSu-tbZz9bEbG5SSFnvs8UuDS50LpuHPu26oXH7Qeiy59Z0QzonJ960yV389hl5vbt9WTzky6f7x8XNMrdUSMilVx5YVQmgyijHBJfKYo0CeFmj55IKqiqLouJecYrG1laBFRytMsIINiPFYa-NfUrRef0Rw9bEnUbQe3k9yus_-RG4OgBNeG--Q3S6Dr1t3FZTCboUmkkJbIzJQ8yNz38FF3WywXXWrUfEDnrdh_8u_ACyQmes</recordid><startdate>20051118</startdate><enddate>20051118</enddate><creator>Bonner, Eric R.</creator><creator>Cahoon, Rebecca E.</creator><creator>Knapke, Sarah M.</creator><creator>Jez, Joseph M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051118</creationdate><title>Molecular Basis of Cysteine Biosynthesis in Plants</title><author>Bonner, Eric R. ; Cahoon, Rebecca E. ; Knapke, Sarah M. ; Jez, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2680-8f9f03776029a9e36589c1b16054b1f5826297c1675f9521acbc90c651c9a6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonner, Eric R.</creatorcontrib><creatorcontrib>Cahoon, Rebecca E.</creatorcontrib><creatorcontrib>Knapke, Sarah M.</creatorcontrib><creatorcontrib>Jez, Joseph M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonner, Eric R.</au><au>Cahoon, Rebecca E.</au><au>Knapke, Sarah M.</au><au>Jez, Joseph M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Basis of Cysteine Biosynthesis in Plants</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2005-11-18</date><risdate>2005</risdate><volume>280</volume><issue>46</issue><spage>38803</spage><epage>38813</epage><pages>38803-38813</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5′-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 Å resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 Å resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn77 and Gln147 are key amino acids for O-acetylserine binding and that Thr74 and Ser75 are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved β8A-β9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.</abstract><pub>Elsevier Inc</pub><pmid>16166087</pmid><doi>10.1074/jbc.M505313200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2005-11, Vol.280 (46), p.38803-38813
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M505313200
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
title Molecular Basis of Cysteine Biosynthesis in Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Basis%20of%20Cysteine%20Biosynthesis%20in%20Plants&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bonner,%20Eric%20R.&rft.date=2005-11-18&rft.volume=280&rft.issue=46&rft.spage=38803&rft.epage=38813&rft.pages=38803-38813&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M505313200&rft_dat=%3Celsevier_cross%3ES0021925819377476%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/16166087&rft_els_id=S0021925819377476&rfr_iscdi=true