Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]

Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and bioch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-09, Vol.279 (36), p.37918-37927
Hauptverfasser: Garcin, Elsa D., Bruns, Christopher M., Lloyd, Sarah J., Hosfield, David J., Tiso, Mauro, Gachhui, Ratan, Stuehr, Dennis J., Tainer, John A., Getzoff, Elizabeth D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37927
container_issue 36
container_start_page 37918
container_title The Journal of biological chemistry
container_volume 279
creator Garcin, Elsa D.
Bruns, Christopher M.
Lloyd, Sarah J.
Hosfield, David J.
Tiso, Mauro
Gachhui, Ratan
Stuehr, Dennis J.
Tainer, John A.
Getzoff, Elizabeth D.
description Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.
doi_str_mv 10.1074/jbc.M406204200
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M406204200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820730656</els_id><sourcerecordid>15208315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoMoOj62LiULtz036STdnaXK-AAf4AMEkZCurjiRmc6Q9Fwdf_3NZQRX1qZqcb6i6hByyNmYs1r-eW9hfCNZVTJZMrZBRpw1ohCKP2-SEWMlL3Spmh2ym9I7yyU13yY7XJUZ42pEuochLmFYRjujpzb5RF2I9CqFr9Uci7RA8M4Dvce35cwOPvQ0ODqZIQwxz4_R9slhpL6nt36IHorw6TukD6t-mNqEL234TK_7ZMvZWcKD775Hns4nj2eXxfXdxdXZyXUBslZDkd_gFkFD5ZSoVdsIphg2qF1XVRxkCw5K3WghalsrKRmvJCtdW8lG87pVYo-M13shhpQiOrOIfm7jynBm_usyWZf50ZUDR-vAYtnOsfvBv_1k4HgNTP3b9MNHNK0PMMW5KWttRGVErXmTsWaNYf7ur8doEnjsAbscgcF0wf92wj-tUoUq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</creator><creatorcontrib>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</creatorcontrib><description>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M406204200</identifier><identifier>PMID: 15208315</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Electron Transport ; Flavins - metabolism ; Humans ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Nitric Oxide Synthase - chemistry ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type I ; Protein Conformation ; Rats ; Sequence Homology, Amino Acid ; X-Ray Diffraction</subject><ispartof>The Journal of biological chemistry, 2004-09, Vol.279 (36), p.37918-37927</ispartof><rights>2004 © 2004 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</citedby><cites>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15208315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcin, Elsa D.</creatorcontrib><creatorcontrib>Bruns, Christopher M.</creatorcontrib><creatorcontrib>Lloyd, Sarah J.</creatorcontrib><creatorcontrib>Hosfield, David J.</creatorcontrib><creatorcontrib>Tiso, Mauro</creatorcontrib><creatorcontrib>Gachhui, Ratan</creatorcontrib><creatorcontrib>Stuehr, Dennis J.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Electron Transport</subject><subject>Flavins - metabolism</subject><subject>Humans</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nitric Oxide Synthase - chemistry</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type I</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Sequence Homology, Amino Acid</subject><subject>X-Ray Diffraction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLLDEQRoMoOj62LiULtz036STdnaXK-AAf4AMEkZCurjiRmc6Q9Fwdf_3NZQRX1qZqcb6i6hByyNmYs1r-eW9hfCNZVTJZMrZBRpw1ohCKP2-SEWMlL3Spmh2ym9I7yyU13yY7XJUZ42pEuochLmFYRjujpzb5RF2I9CqFr9Uci7RA8M4Dvce35cwOPvQ0ODqZIQwxz4_R9slhpL6nt36IHorw6TukD6t-mNqEL234TK_7ZMvZWcKD775Hns4nj2eXxfXdxdXZyXUBslZDkd_gFkFD5ZSoVdsIphg2qF1XVRxkCw5K3WghalsrKRmvJCtdW8lG87pVYo-M13shhpQiOrOIfm7jynBm_usyWZf50ZUDR-vAYtnOsfvBv_1k4HgNTP3b9MNHNK0PMMW5KWttRGVErXmTsWaNYf7ur8doEnjsAbscgcF0wf92wj-tUoUq</recordid><startdate>20040903</startdate><enddate>20040903</enddate><creator>Garcin, Elsa D.</creator><creator>Bruns, Christopher M.</creator><creator>Lloyd, Sarah J.</creator><creator>Hosfield, David J.</creator><creator>Tiso, Mauro</creator><creator>Gachhui, Ratan</creator><creator>Stuehr, Dennis J.</creator><creator>Tainer, John A.</creator><creator>Getzoff, Elizabeth D.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040903</creationdate><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><author>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Electron Transport</topic><topic>Flavins - metabolism</topic><topic>Humans</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nitric Oxide Synthase - chemistry</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type I</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Sequence Homology, Amino Acid</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcin, Elsa D.</creatorcontrib><creatorcontrib>Bruns, Christopher M.</creatorcontrib><creatorcontrib>Lloyd, Sarah J.</creatorcontrib><creatorcontrib>Hosfield, David J.</creatorcontrib><creatorcontrib>Tiso, Mauro</creatorcontrib><creatorcontrib>Gachhui, Ratan</creatorcontrib><creatorcontrib>Stuehr, Dennis J.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcin, Elsa D.</au><au>Bruns, Christopher M.</au><au>Lloyd, Sarah J.</au><au>Hosfield, David J.</au><au>Tiso, Mauro</au><au>Gachhui, Ratan</au><au>Stuehr, Dennis J.</au><au>Tainer, John A.</au><au>Getzoff, Elizabeth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-09-03</date><risdate>2004</risdate><volume>279</volume><issue>36</issue><spage>37918</spage><epage>37927</epage><pages>37918-37927</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15208315</pmid><doi>10.1074/jbc.M406204200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2004-09, Vol.279 (36), p.37918-37927
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M406204200
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
Binding Sites
Catalysis
Electron Transport
Flavins - metabolism
Humans
Isoenzymes - chemistry
Isoenzymes - metabolism
Models, Molecular
Molecular Sequence Data
Mutagenesis
Nitric Oxide Synthase - chemistry
Nitric Oxide Synthase - metabolism
Nitric Oxide Synthase Type I
Protein Conformation
Rats
Sequence Homology, Amino Acid
X-Ray Diffraction
title Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Isozyme-specific%20Regulation%20of%20Electron%20Transfer%20in%20Nitric-oxide%20Synthase%5Bboxs%5D&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Garcin,%20Elsa%20D.&rft.date=2004-09-03&rft.volume=279&rft.issue=36&rft.spage=37918&rft.epage=37927&rft.pages=37918-37927&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M406204200&rft_dat=%3Cpubmed_cross%3E15208315%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15208315&rft_els_id=S0021925820730656&rfr_iscdi=true