Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]
Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and bioch...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-09, Vol.279 (36), p.37918-37927 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37927 |
---|---|
container_issue | 36 |
container_start_page | 37918 |
container_title | The Journal of biological chemistry |
container_volume | 279 |
creator | Garcin, Elsa D. Bruns, Christopher M. Lloyd, Sarah J. Hosfield, David J. Tiso, Mauro Gachhui, Ratan Stuehr, Dennis J. Tainer, John A. Getzoff, Elizabeth D. |
description | Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme. |
doi_str_mv | 10.1074/jbc.M406204200 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M406204200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820730656</els_id><sourcerecordid>15208315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</originalsourceid><addsrcrecordid>eNp1kEtLLDEQRoMoOj62LiULtz036STdnaXK-AAf4AMEkZCurjiRmc6Q9Fwdf_3NZQRX1qZqcb6i6hByyNmYs1r-eW9hfCNZVTJZMrZBRpw1ohCKP2-SEWMlL3Spmh2ym9I7yyU13yY7XJUZ42pEuochLmFYRjujpzb5RF2I9CqFr9Uci7RA8M4Dvce35cwOPvQ0ODqZIQwxz4_R9slhpL6nt36IHorw6TukD6t-mNqEL234TK_7ZMvZWcKD775Hns4nj2eXxfXdxdXZyXUBslZDkd_gFkFD5ZSoVdsIphg2qF1XVRxkCw5K3WghalsrKRmvJCtdW8lG87pVYo-M13shhpQiOrOIfm7jynBm_usyWZf50ZUDR-vAYtnOsfvBv_1k4HgNTP3b9MNHNK0PMMW5KWttRGVErXmTsWaNYf7ur8doEnjsAbscgcF0wf92wj-tUoUq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</creator><creatorcontrib>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</creatorcontrib><description>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M406204200</identifier><identifier>PMID: 15208315</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Electron Transport ; Flavins - metabolism ; Humans ; Isoenzymes - chemistry ; Isoenzymes - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Nitric Oxide Synthase - chemistry ; Nitric Oxide Synthase - metabolism ; Nitric Oxide Synthase Type I ; Protein Conformation ; Rats ; Sequence Homology, Amino Acid ; X-Ray Diffraction</subject><ispartof>The Journal of biological chemistry, 2004-09, Vol.279 (36), p.37918-37927</ispartof><rights>2004 © 2004 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</citedby><cites>FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15208315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcin, Elsa D.</creatorcontrib><creatorcontrib>Bruns, Christopher M.</creatorcontrib><creatorcontrib>Lloyd, Sarah J.</creatorcontrib><creatorcontrib>Hosfield, David J.</creatorcontrib><creatorcontrib>Tiso, Mauro</creatorcontrib><creatorcontrib>Gachhui, Ratan</creatorcontrib><creatorcontrib>Stuehr, Dennis J.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>Electron Transport</subject><subject>Flavins - metabolism</subject><subject>Humans</subject><subject>Isoenzymes - chemistry</subject><subject>Isoenzymes - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Nitric Oxide Synthase - chemistry</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Nitric Oxide Synthase Type I</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Sequence Homology, Amino Acid</subject><subject>X-Ray Diffraction</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLLDEQRoMoOj62LiULtz036STdnaXK-AAf4AMEkZCurjiRmc6Q9Fwdf_3NZQRX1qZqcb6i6hByyNmYs1r-eW9hfCNZVTJZMrZBRpw1ohCKP2-SEWMlL3Spmh2ym9I7yyU13yY7XJUZ42pEuochLmFYRjujpzb5RF2I9CqFr9Uci7RA8M4Dvce35cwOPvQ0ODqZIQwxz4_R9slhpL6nt36IHorw6TukD6t-mNqEL234TK_7ZMvZWcKD775Hns4nj2eXxfXdxdXZyXUBslZDkd_gFkFD5ZSoVdsIphg2qF1XVRxkCw5K3WghalsrKRmvJCtdW8lG87pVYo-M13shhpQiOrOIfm7jynBm_usyWZf50ZUDR-vAYtnOsfvBv_1k4HgNTP3b9MNHNK0PMMW5KWttRGVErXmTsWaNYf7ur8doEnjsAbscgcF0wf92wj-tUoUq</recordid><startdate>20040903</startdate><enddate>20040903</enddate><creator>Garcin, Elsa D.</creator><creator>Bruns, Christopher M.</creator><creator>Lloyd, Sarah J.</creator><creator>Hosfield, David J.</creator><creator>Tiso, Mauro</creator><creator>Gachhui, Ratan</creator><creator>Stuehr, Dennis J.</creator><creator>Tainer, John A.</creator><creator>Getzoff, Elizabeth D.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040903</creationdate><title>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</title><author>Garcin, Elsa D. ; Bruns, Christopher M. ; Lloyd, Sarah J. ; Hosfield, David J. ; Tiso, Mauro ; Gachhui, Ratan ; Stuehr, Dennis J. ; Tainer, John A. ; Getzoff, Elizabeth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-4061aec9c6f5375b83050e8e9fd661c4bcfc2989337a7544016402fb648917b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>Electron Transport</topic><topic>Flavins - metabolism</topic><topic>Humans</topic><topic>Isoenzymes - chemistry</topic><topic>Isoenzymes - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Nitric Oxide Synthase - chemistry</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Nitric Oxide Synthase Type I</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Sequence Homology, Amino Acid</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcin, Elsa D.</creatorcontrib><creatorcontrib>Bruns, Christopher M.</creatorcontrib><creatorcontrib>Lloyd, Sarah J.</creatorcontrib><creatorcontrib>Hosfield, David J.</creatorcontrib><creatorcontrib>Tiso, Mauro</creatorcontrib><creatorcontrib>Gachhui, Ratan</creatorcontrib><creatorcontrib>Stuehr, Dennis J.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcin, Elsa D.</au><au>Bruns, Christopher M.</au><au>Lloyd, Sarah J.</au><au>Hosfield, David J.</au><au>Tiso, Mauro</au><au>Gachhui, Ratan</au><au>Stuehr, Dennis J.</au><au>Tainer, John A.</au><au>Getzoff, Elizabeth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs]</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2004-09-03</date><risdate>2004</risdate><volume>279</volume><issue>36</issue><spage>37918</spage><epage>37927</epage><pages>37918-37927</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca2+/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg1400, and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15208315</pmid><doi>10.1074/jbc.M406204200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2004-09, Vol.279 (36), p.37918-37927 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_crossref_primary_10_1074_jbc_M406204200 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Animals Binding Sites Catalysis Electron Transport Flavins - metabolism Humans Isoenzymes - chemistry Isoenzymes - metabolism Models, Molecular Molecular Sequence Data Mutagenesis Nitric Oxide Synthase - chemistry Nitric Oxide Synthase - metabolism Nitric Oxide Synthase Type I Protein Conformation Rats Sequence Homology, Amino Acid X-Ray Diffraction |
title | Structural Basis for Isozyme-specific Regulation of Electron Transfer in Nitric-oxide Synthase[boxs] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20Isozyme-specific%20Regulation%20of%20Electron%20Transfer%20in%20Nitric-oxide%20Synthase%5Bboxs%5D&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Garcin,%20Elsa%20D.&rft.date=2004-09-03&rft.volume=279&rft.issue=36&rft.spage=37918&rft.epage=37927&rft.pages=37918-37927&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M406204200&rft_dat=%3Cpubmed_cross%3E15208315%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15208315&rft_els_id=S0021925820730656&rfr_iscdi=true |