Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis

Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the α3β1 integrin and with other tetraspanins. Using a panel of CD151/CD9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-11, Vol.276 (44), p.41165-41174
Hauptverfasser: Berditchevski, Fedor, Gilbert, Elizabeth, Griffiths, Meryn R., Fitter, Steven, Ashman, Leonie, Jenner, Sonya J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41174
container_issue 44
container_start_page 41165
container_title The Journal of biological chemistry
container_volume 276
creator Berditchevski, Fedor
Gilbert, Elizabeth
Griffiths, Meryn R.
Fitter, Steven
Ashman, Leonie
Jenner, Sonya J.
description Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the α3β1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with α3β1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu149 and Glu213). Furthermore, the substitution of 11 amino acids (residues 195–205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151·CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin·tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151·α3β1interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151·α3β1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the “tetraspanin web” can be controlled at various levels by different regions of the protein.
doi_str_mv 10.1074/jbc.M104041200
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M104041200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820779731</els_id><sourcerecordid>S0021925820779731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3070-9ca483442caf08a4dab74bd76a12631c1e3f84d2d234ffdcfe14862c3d1794d63</originalsourceid><addsrcrecordid>eNp1kMtKQzEQhoMoWKtb13mBUzNJei7LUi8ttLipoKuQk0xqSs0pyVHoY-nGvQ_QZ_KUKq6czcD8fD_DR8glsAGwQl6tajOYA5NMAmfsiPSAlSITQ3g8Jj3GOGQVH5an5CylFetGVtAjT6Og19vkE20cbZ-Rjq9hCF-fu3ex-wA6DS0uow9UB_sbLbCNOm106M77PGrT-iYkWm_p_LXVSwzYFZ6TE6fXCS9-dp883N4sxpNsdn83HY9mmRGsYFlltCyFlNxox0otra4LWdsi18BzAQZQuFJabrmQzlnjEGSZcyMsFJW0ueiTwaHXxCaliE5ton_RcauAqb0Y1YlRf2I6oDwA2H315jGqZDwGg9ZHNK2yjf8P_QZ02WtZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Berditchevski, Fedor ; Gilbert, Elizabeth ; Griffiths, Meryn R. ; Fitter, Steven ; Ashman, Leonie ; Jenner, Sonya J.</creator><creatorcontrib>Berditchevski, Fedor ; Gilbert, Elizabeth ; Griffiths, Meryn R. ; Fitter, Steven ; Ashman, Leonie ; Jenner, Sonya J.</creatorcontrib><description>Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the α3β1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with α3β1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu149 and Glu213). Furthermore, the substitution of 11 amino acids (residues 195–205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151·CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin·tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151·α3β1interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151·α3β1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the “tetraspanin web” can be controlled at various levels by different regions of the protein.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M104041200</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2001-11, Vol.276 (44), p.41165-41174</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3070-9ca483442caf08a4dab74bd76a12631c1e3f84d2d234ffdcfe14862c3d1794d63</citedby><cites>FETCH-LOGICAL-c3070-9ca483442caf08a4dab74bd76a12631c1e3f84d2d234ffdcfe14862c3d1794d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Berditchevski, Fedor</creatorcontrib><creatorcontrib>Gilbert, Elizabeth</creatorcontrib><creatorcontrib>Griffiths, Meryn R.</creatorcontrib><creatorcontrib>Fitter, Steven</creatorcontrib><creatorcontrib>Ashman, Leonie</creatorcontrib><creatorcontrib>Jenner, Sonya J.</creatorcontrib><title>Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis</title><title>The Journal of biological chemistry</title><description>Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the α3β1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with α3β1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu149 and Glu213). Furthermore, the substitution of 11 amino acids (residues 195–205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151·CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin·tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151·α3β1interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151·α3β1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the “tetraspanin web” can be controlled at various levels by different regions of the protein.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKQzEQhoMoWKtb13mBUzNJei7LUi8ttLipoKuQk0xqSs0pyVHoY-nGvQ_QZ_KUKq6czcD8fD_DR8glsAGwQl6tajOYA5NMAmfsiPSAlSITQ3g8Jj3GOGQVH5an5CylFetGVtAjT6Og19vkE20cbZ-Rjq9hCF-fu3ex-wA6DS0uow9UB_sbLbCNOm106M77PGrT-iYkWm_p_LXVSwzYFZ6TE6fXCS9-dp883N4sxpNsdn83HY9mmRGsYFlltCyFlNxox0otra4LWdsi18BzAQZQuFJabrmQzlnjEGSZcyMsFJW0ueiTwaHXxCaliE5ton_RcauAqb0Y1YlRf2I6oDwA2H315jGqZDwGg9ZHNK2yjf8P_QZ02WtZ</recordid><startdate>20011102</startdate><enddate>20011102</enddate><creator>Berditchevski, Fedor</creator><creator>Gilbert, Elizabeth</creator><creator>Griffiths, Meryn R.</creator><creator>Fitter, Steven</creator><creator>Ashman, Leonie</creator><creator>Jenner, Sonya J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011102</creationdate><title>Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis</title><author>Berditchevski, Fedor ; Gilbert, Elizabeth ; Griffiths, Meryn R. ; Fitter, Steven ; Ashman, Leonie ; Jenner, Sonya J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3070-9ca483442caf08a4dab74bd76a12631c1e3f84d2d234ffdcfe14862c3d1794d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berditchevski, Fedor</creatorcontrib><creatorcontrib>Gilbert, Elizabeth</creatorcontrib><creatorcontrib>Griffiths, Meryn R.</creatorcontrib><creatorcontrib>Fitter, Steven</creatorcontrib><creatorcontrib>Ashman, Leonie</creatorcontrib><creatorcontrib>Jenner, Sonya J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berditchevski, Fedor</au><au>Gilbert, Elizabeth</au><au>Griffiths, Meryn R.</au><au>Fitter, Steven</au><au>Ashman, Leonie</au><au>Jenner, Sonya J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2001-11-02</date><risdate>2001</risdate><volume>276</volume><issue>44</issue><spage>41165</spage><epage>41174</epage><pages>41165-41174</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Transmembrane proteins of the tetraspanin superfamily are associated with various integrins and modulate their function. We performed mutagenesis analysis to establish structural requirements for the interaction of CD151 with the α3β1 integrin and with other tetraspanins. Using a panel of CD151/CD9 chimeras and CD151 deletion mutants we show that the minimal region, which confers stable (e.g. Triton X-100-resistant) association of the tetraspanin with α3β1, maps within the large extracellular loop (LECL) of CD151 (the amino acid sequence between residues Leu149 and Glu213). Furthermore, the substitution of 11 amino acids (residues 195–205) from this region for a corresponding sequence from CD9 LECL or point mutations of cysteines in the conserved CCG and PXXCC motifs abolish the interaction. The removal of the LECL CD151 does not affect the association of the protein with other tetraspanins (e.g. CD9, CD81, CD63, and wild-type CD151). On the other hand, the mutation of the CCG motif selectively prevents the homotypic CD151·CD151 interaction but does not influence the association of the mutagenized CD151 with other tetraspanins. These results demonstrate the differences in structural requirements for the heterotypic and homotypic tetraspanin·tetraspanin interactions. Various deletions involving the small extracellular loop and the first three transmembrane domains prevent surface expression of the CD151 mutants but do not affect the CD151·α3β1interaction. The CD151 deletion mutants are accumulated in the endoplasmic reticulum and redirected to the lysosomes. The assembly of the CD151·α3β1 complex occurs early during the integrin biosynthesis and precedes the interaction of CD151 with other tetraspanins. Collectively, these data show that the incorporation of CD151 into the “tetraspanin web” can be controlled at various levels by different regions of the protein.</abstract><pub>Elsevier Inc</pub><doi>10.1074/jbc.M104041200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-11, Vol.276 (44), p.41165-41174
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M104041200
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Analysis of the CD151·α3β1 Integrin and CD151·Tetraspanin Interactions by Mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20CD151%C2%B7%CE%B13%CE%B21%20Integrin%20and%20CD151%C2%B7Tetraspanin%20Interactions%20by%20Mutagenesis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Berditchevski,%20Fedor&rft.date=2001-11-02&rft.volume=276&rft.issue=44&rft.spage=41165&rft.epage=41174&rft.pages=41165-41174&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M104041200&rft_dat=%3Celsevier_cross%3ES0021925820779731%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021925820779731&rfr_iscdi=true