Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli

Acrolein, a reactive α,β-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(β-d-2′-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (γ-OH-PdG). The cellular processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-03, Vol.276 (12), p.9071-9076
Hauptverfasser: Yang, In-Young, Hossain, Munfarah, Miller, Holly, Khullar, Sonia, Johnson, Francis, Grollman, Arthur, Moriya, Masaaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9076
container_issue 12
container_start_page 9071
container_title The Journal of biological chemistry
container_volume 276
creator Yang, In-Young
Hossain, Munfarah
Miller, Holly
Khullar, Sonia
Johnson, Francis
Grollman, Arthur
Moriya, Masaaki
description Acrolein, a reactive α,β-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(β-d-2′-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (γ-OH-PdG). The cellular processing and mutagenic potential of γ-OH-PdG have been examined, using a site-specific approach in which a single adduct is embedded in double-strand plasmid DNA. Analysis of progeny plasmid reveals that this adduct is excised by nucleotide excision repair. The apparent level of inhibition of DNA synthesis is ∼70% in Escherichia coli ΔrecA, uvrA. The block to DNA synthesis can be overcome partially byrecA-dependent recombination repair. Targeted G → T transversions were observed at a frequency of 7 × 10−4/translesion synthesis. Inactivation ofpolB, dinB, and umuD,C genes coding for “SOS” DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis. In vitroprimer extension experiments revealed that the Klenow fragment of polymerase I catalyzes error-prone synthesis, preferentially incorporating dAMP and dGMP opposite γ-OH-PdG. We conclude from this study that DNA polymerase III catalyzes translesion synthesis across γ-OH-PdG in an error-free manner. Nucleotide excision repair, recombination repair, and highly accurate translesion synthesis combine to protect E. coli from the potential genotoxicity of this DNA adduct.
doi_str_mv 10.1074/jbc.M008918200
format Article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M008918200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819462054</els_id><sourcerecordid>S0021925819462054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2670-5d7161b418a3bfc593aea22ad221473b97940c4c158516ebe591c18f81c6e8ab3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlavngOet2ayX8mx1PoBLYooeAvZ7Gw3pd2UZFvtvzdSwZNzmcv7zjw8hFwDGwMrs9tVZcYLxoQEwRk7IUNgIk3SHD5OyZAxDonkuRiQixBWLE4m4ZwMAIBnMmdD8vKKYeu6gIH2jvYt0oVeOU8nxrs12i6p0ds91vQO3ddhudOdC7ZDOqnrnemp7WbBtDFiWqupcWt7Sc4avQ549btH5P1-9jZ9TObPD0_TyTwxvChZktclFFBlIHRaNSaXqUbNua45h6xMK1nKjJnMQC5yKLDCXIIB0QgwBQpdpSMyPt6NoCF4bNTW2432BwVM_ahRUY36UxMLN8dCa5ftp_WoKusi-0bxslDAlWQlxJQ4pjCy7y16FYzFzmAdG6ZXtbP_PfgGohJzzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli</title><source>EZB Free E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yang, In-Young ; Hossain, Munfarah ; Miller, Holly ; Khullar, Sonia ; Johnson, Francis ; Grollman, Arthur ; Moriya, Masaaki</creator><creatorcontrib>Yang, In-Young ; Hossain, Munfarah ; Miller, Holly ; Khullar, Sonia ; Johnson, Francis ; Grollman, Arthur ; Moriya, Masaaki</creatorcontrib><description>Acrolein, a reactive α,β-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(β-d-2′-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (γ-OH-PdG). The cellular processing and mutagenic potential of γ-OH-PdG have been examined, using a site-specific approach in which a single adduct is embedded in double-strand plasmid DNA. Analysis of progeny plasmid reveals that this adduct is excised by nucleotide excision repair. The apparent level of inhibition of DNA synthesis is ∼70% in Escherichia coli ΔrecA, uvrA. The block to DNA synthesis can be overcome partially byrecA-dependent recombination repair. Targeted G → T transversions were observed at a frequency of 7 × 10−4/translesion synthesis. Inactivation ofpolB, dinB, and umuD,C genes coding for “SOS” DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis. In vitroprimer extension experiments revealed that the Klenow fragment of polymerase I catalyzes error-prone synthesis, preferentially incorporating dAMP and dGMP opposite γ-OH-PdG. We conclude from this study that DNA polymerase III catalyzes translesion synthesis across γ-OH-PdG in an error-free manner. Nucleotide excision repair, recombination repair, and highly accurate translesion synthesis combine to protect E. coli from the potential genotoxicity of this DNA adduct.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M008918200</identifier><identifier>PMID: 11124950</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2001-03, Vol.276 (12), p.9071-9076</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2670-5d7161b418a3bfc593aea22ad221473b97940c4c158516ebe591c18f81c6e8ab3</citedby><cites>FETCH-LOGICAL-c2670-5d7161b418a3bfc593aea22ad221473b97940c4c158516ebe591c18f81c6e8ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, In-Young</creatorcontrib><creatorcontrib>Hossain, Munfarah</creatorcontrib><creatorcontrib>Miller, Holly</creatorcontrib><creatorcontrib>Khullar, Sonia</creatorcontrib><creatorcontrib>Johnson, Francis</creatorcontrib><creatorcontrib>Grollman, Arthur</creatorcontrib><creatorcontrib>Moriya, Masaaki</creatorcontrib><title>Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli</title><title>The Journal of biological chemistry</title><description>Acrolein, a reactive α,β-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(β-d-2′-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (γ-OH-PdG). The cellular processing and mutagenic potential of γ-OH-PdG have been examined, using a site-specific approach in which a single adduct is embedded in double-strand plasmid DNA. Analysis of progeny plasmid reveals that this adduct is excised by nucleotide excision repair. The apparent level of inhibition of DNA synthesis is ∼70% in Escherichia coli ΔrecA, uvrA. The block to DNA synthesis can be overcome partially byrecA-dependent recombination repair. Targeted G → T transversions were observed at a frequency of 7 × 10−4/translesion synthesis. Inactivation ofpolB, dinB, and umuD,C genes coding for “SOS” DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis. In vitroprimer extension experiments revealed that the Klenow fragment of polymerase I catalyzes error-prone synthesis, preferentially incorporating dAMP and dGMP opposite γ-OH-PdG. We conclude from this study that DNA polymerase III catalyzes translesion synthesis across γ-OH-PdG in an error-free manner. Nucleotide excision repair, recombination repair, and highly accurate translesion synthesis combine to protect E. coli from the potential genotoxicity of this DNA adduct.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotlavngOet2ayX8mx1PoBLYooeAvZ7Gw3pd2UZFvtvzdSwZNzmcv7zjw8hFwDGwMrs9tVZcYLxoQEwRk7IUNgIk3SHD5OyZAxDonkuRiQixBWLE4m4ZwMAIBnMmdD8vKKYeu6gIH2jvYt0oVeOU8nxrs12i6p0ds91vQO3ddhudOdC7ZDOqnrnemp7WbBtDFiWqupcWt7Sc4avQ549btH5P1-9jZ9TObPD0_TyTwxvChZktclFFBlIHRaNSaXqUbNua45h6xMK1nKjJnMQC5yKLDCXIIB0QgwBQpdpSMyPt6NoCF4bNTW2432BwVM_ahRUY36UxMLN8dCa5ftp_WoKusi-0bxslDAlWQlxJQ4pjCy7y16FYzFzmAdG6ZXtbP_PfgGohJzzg</recordid><startdate>20010323</startdate><enddate>20010323</enddate><creator>Yang, In-Young</creator><creator>Hossain, Munfarah</creator><creator>Miller, Holly</creator><creator>Khullar, Sonia</creator><creator>Johnson, Francis</creator><creator>Grollman, Arthur</creator><creator>Moriya, Masaaki</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010323</creationdate><title>Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli</title><author>Yang, In-Young ; Hossain, Munfarah ; Miller, Holly ; Khullar, Sonia ; Johnson, Francis ; Grollman, Arthur ; Moriya, Masaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2670-5d7161b418a3bfc593aea22ad221473b97940c4c158516ebe591c18f81c6e8ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, In-Young</creatorcontrib><creatorcontrib>Hossain, Munfarah</creatorcontrib><creatorcontrib>Miller, Holly</creatorcontrib><creatorcontrib>Khullar, Sonia</creatorcontrib><creatorcontrib>Johnson, Francis</creatorcontrib><creatorcontrib>Grollman, Arthur</creatorcontrib><creatorcontrib>Moriya, Masaaki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, In-Young</au><au>Hossain, Munfarah</au><au>Miller, Holly</au><au>Khullar, Sonia</au><au>Johnson, Francis</au><au>Grollman, Arthur</au><au>Moriya, Masaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2001-03-23</date><risdate>2001</risdate><volume>276</volume><issue>12</issue><spage>9071</spage><epage>9076</epage><pages>9071-9076</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Acrolein, a reactive α,β-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(β-d-2′-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (γ-OH-PdG). The cellular processing and mutagenic potential of γ-OH-PdG have been examined, using a site-specific approach in which a single adduct is embedded in double-strand plasmid DNA. Analysis of progeny plasmid reveals that this adduct is excised by nucleotide excision repair. The apparent level of inhibition of DNA synthesis is ∼70% in Escherichia coli ΔrecA, uvrA. The block to DNA synthesis can be overcome partially byrecA-dependent recombination repair. Targeted G → T transversions were observed at a frequency of 7 × 10−4/translesion synthesis. Inactivation ofpolB, dinB, and umuD,C genes coding for “SOS” DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis. In vitroprimer extension experiments revealed that the Klenow fragment of polymerase I catalyzes error-prone synthesis, preferentially incorporating dAMP and dGMP opposite γ-OH-PdG. We conclude from this study that DNA polymerase III catalyzes translesion synthesis across γ-OH-PdG in an error-free manner. Nucleotide excision repair, recombination repair, and highly accurate translesion synthesis combine to protect E. coli from the potential genotoxicity of this DNA adduct.</abstract><pub>Elsevier Inc</pub><pmid>11124950</pmid><doi>10.1074/jbc.M008918200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-03, Vol.276 (12), p.9071-9076
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M008918200
source EZB Free E-Journals; Alma/SFX Local Collection
title Responses to the Major Acrolein-derived Deoxyguanosine Adduct inEscherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Responses%20to%20the%20Major%20Acrolein-derived%20Deoxyguanosine%20Adduct%20inEscherichia%20coli&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yang,%20In-Young&rft.date=2001-03-23&rft.volume=276&rft.issue=12&rft.spage=9071&rft.epage=9076&rft.pages=9071-9076&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M008918200&rft_dat=%3Celsevier_cross%3ES0021925819462054%3C/elsevier_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11124950&rft_els_id=S0021925819462054&rfr_iscdi=true