The Super Anti-apoptotic Factor Bcl-xFNK Constructed by Disturbing Intramolecular Polar Interactions in Rat Bcl-xL

A powerful artificial anti-apoptotic factor will be useful for medical applications of the future therapies for many diseases by prolonging survival of sick cells. For constructing it, we designed the super anti-apoptotic factor by disturbing three intramolecular polar interactions among α-helix str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-11, Vol.275 (47), p.37240-37245
Hauptverfasser: Asoh, Sadamitsu, Ohtsu, Takashi, Ohta, Shigeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A powerful artificial anti-apoptotic factor will be useful for medical applications of the future therapies for many diseases by prolonging survival of sick cells. For constructing it, we designed the super anti-apoptotic factor by disturbing three intramolecular polar interactions among α-helix structures of Bcl-xL. The resultant mutant Bcl-xL, named Bcl-xFNK, was expected to make the pore-forming domain more mobile and flexible than the wild-type. When overexpressed in Jurkat cells, Bcl-xFNK was markedly more potent in prolonging survival following apoptosis-inducing treatment with a kind of cell death cytokines (anti-Fas), a protein kinase inhibitor (staurosporine), cell cycle inhibitors (TN-16, camptothecin, hydroxyurea, and trichostatin A), or oxidative stress (hydrogen peroxide and paraquat) than wild-type Bcl-xL. Furthermore, the transfectants ofbcl-xFNK became more resistant against a calcium ionophore and even a heat treatment than wild-type Bcl-xL. In addition, Bcl-xFNK showed marked anti-apoptotic activity in Chinese hamster ovary and Jurkat cells deprived of serum. Thus, Bcl-xFNK may be the first mutant generated by site-directed mutagenesis of Bcl-xL with a gain-of-function phenotype. Interestingly, Bcl-xFNK was found to allow interleukin-3-dependent FDC-P1 to grow without interleukin-3, but not BaF/3. In Bcl-xFNK transfectants of FDC-P1 and Jurkat, the p42/p44 mitogen-activated protein kinase was activated by 2 to 5 times, but not in those of BaF/3 and Chinese hamster ovary. Bcl-xFNK might gain a new function to activate the mitogen-activated protein kinase in a cell-type specific manner. The findings of this study suggest that the central α5-α6 pore-forming region of anti-apoptotic factor Bcl-xL has a pivotal role in suppressing apoptosis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M005841200