Loops and Bulge/Loops in Iron-responsive Element Isoforms Influence Iron Regulatory Protein Binding
A family of noncoding mRNA sequences, iron-responsive elements (IREs), coordinately regulate several mRNAs through binding a family of mRNA-specific proteins, iron regulatory proteins (IRPs). IREs are hairpins with a constant terminal loop and base-paired stems interrupted by an internal loop/bulge...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-09, Vol.273 (37), p.23637-23640 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A family of noncoding mRNA sequences, iron-responsive elements (IREs), coordinately regulate several mRNAs through binding a family of mRNA-specific proteins, iron regulatory proteins (IRPs). IREs are hairpins with a constant terminal loop and base-paired stems interrupted by an internal loop/bulge (in ferritin mRNA) or a C-bulge (in m-aconitase, erythroid aminolevulinate synthase, and transferrin receptor mRNAs). IRP2 binding requires the conserved C-G base pair in the terminal loop, whereas IRP1 binding occurs with the C-G or engineered U-A. Here we show the contribution of the IRE internal loop/bulge to IRP2 binding by comparing natural and engineered IRE variants. Conversion of the internal loop/bulge in the ferritin-IRE to a C-bulge, by deletion of U, decreased IRP2 binding by >95%, whereas IRP1 binding changed only 13%. Moreover, IRP2 binding to natural IREs with the C-bulge was similar to the ΔU6 ferritin-IRE: >90% lower than the ferritin-IRE. The results predict mRNA-specific variation in IRE-dependent regulation in vivo and may relate to previously observed differences in iron-induced ferritin and m-aconitase synthesis in liver and cultured cells. Variations in IRE structure and cellular IRP1/IRP2 ratios can provide a range of finely tuned, mRNA-specific responses to the same (iron) signal. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.273.37.23637 |