Reactive Oxygen Species Released from Mitochondria during Brief Hypoxia Induce Preconditioning in Cardiomyocytes

Reactive oxygen species (ROS) have been proposed to participate in the induction of cardiac preconditioning. However, their source and mechanism of induction are unclear. We tested whether brief hypoxia induces preconditioning by augmenting mitochondrial generation of ROS in chick cardiomyocytes. Ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-07, Vol.273 (29), p.18092-18098
Hauptverfasser: Vanden Hoek, T L, Becker, L B, Shao, Z, Li, C, Schumacker, P T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) have been proposed to participate in the induction of cardiac preconditioning. However, their source and mechanism of induction are unclear. We tested whether brief hypoxia induces preconditioning by augmenting mitochondrial generation of ROS in chick cardiomyocytes. Cells were preconditioned with 10 min of hypoxia, followed by 1 h of simulated ischemia and 3 h of reperfusion. Preconditioning decreased cell death from 47 ± 3% to 14 ± 2%. Return of contraction was observed in 3/3 preconditioned versus 0/6 non-preconditioned experiments. During induction, ROS oxidation of the probe dichlorofluorescin (sensitive to H 2 O 2 ) increased ∼2.5-fold. As a substitute for hypoxia, the addition of H 2 O 2 (15 μmol/liter) during normoxia also induced preconditioning-like protection. Conversely, the ROS signal during hypoxia was attenuated with the thiol reductant 2-mercaptopropionyl glycine, the cytosolic Cu,Zn-superoxide dismutase inhibitor diethyldithiocarbamic acid, and the anion channel inhibitor 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, all of which also abrogated protection. ROS generation during hypoxia was attenuated by myxothiazol, but not by diphenyleneiodonium or the nitric-oxide synthase inhibitor l -nitroarginine. We conclude that hypoxia increases mitochondrial superoxide generation which initiates preconditioning protection. Furthermore, mitochondrial anion channels and cytosolic dismutation to H 2 O 2 may be important steps for oxidant induction of hypoxic preconditioning.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.29.18092