L-735,524: An Orally Bioavailable Human Immunodeficiency Virus Type 1 Protease Inhibitor

To date, numerous inhibitors of the human immunodeficiency virus type 1 protease have been reported, but few have been studied extensively in humans, primarily as a consequence of poor oral bioavailability in animal models. L-735,524 represents a class of human immunodeficiency virus type 1 protease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1994-04, Vol.91 (9), p.4096-4100
Hauptverfasser: Vacca, J. P., Dorsey, B. D., Schleif, W. A., Levin, R. B., McDaniel, S. L., Darke, P. L., Zugay, J., Quintero, J. C., Blahy, O. M., Roth, E., Sardana, V. V., Schlabach, A. J., Graham, P. I., Condra, J. H., Gotlib, L., Holloway, M. K., Lin, J., I.-W. Chen, Vastag, K., Ostovic, D., Anderson, P. S., Emini, E. A., Huff, J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To date, numerous inhibitors of the human immunodeficiency virus type 1 protease have been reported, but few have been studied extensively in humans, primarily as a consequence of poor oral bioavailability in animal models. L-735,524 represents a class of human immunodeficiency virus type 1 protease inhibitors, termed hydroxyaminopentane amides, that incorporate a basic amine into the hydroxyethylene inhibitor backbone. L-735,524 is a potent inhibitor of virus replication in cell culture and inhibits the protease-mediated cleavage of the viral precursor polyproteins that results in the production of noninfectious progeny viral particles. The compound is effective against viruses resistant to reverse transcriptase inhibitors and is synergistically active when used in combination with reverse transcriptase inhibitors. Most importantly, L-735,524 exhibits good oral bioavailability and plasma pharmacokinetic profiles in two species of laboratory animals by using clinically acceptable formulations. Accordingly, the compound was selected for evaluation of safety and pharmacokinetic studies in humans.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.9.4096