Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala

A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (26), p.16137-16142
Hauptverfasser: Poeggel, Gerd, Helmeke, Carina, Abraham, Andreas, Schwabe, Tina, Friedrich, Patricia, Braun, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16142
container_issue 26
container_start_page 16137
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Poeggel, Gerd
Helmeke, Carina
Abraham, Andreas
Schwabe, Tina
Friedrich, Patricia
Braun, Katharina
description A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments). Increased spine densities were also observed on the hippocampal CA1 pyramidal neurons (up to 109% on the distal apical segments and up to 106% on the basal segment) compared with the control group. In contrast, significantly reduced spine densities were observed on the granule cell dendrites in the dentate gyrus (down to 92%) and on the apical dendrites in the medial nucleus of the amygdala (down to 95%). No significant changes of spine densities were seen in the somatosensory cortex (except for an increase in the proximal apical segments) and in the lateral nucleus of the dorsal amygdala (except for an increase in the proximal basal dendritic segments). These results demonstrate that repeated stressful emotional experience alters the balance of presumably excitatory synaptic inputs of pyramidal neurons in the limbic system. Such experience-induced modulations of limbic circuits may determine psychosocial and cognitive capacities during later life.
doi_str_mv 10.1073/pnas.2434663100
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_2434663100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3149143</jstor_id><sourcerecordid>3149143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-978643e0f5e569ca1e339bc4dd44c190c43c49b5add4d8d927538c5d32215e9b3</originalsourceid><addsrcrecordid>eNqFkktrGzEUhUVpady0625KEV0UCplEz9FokYUxbtNiKPSxFrJGTmRmpImkCfa_rwabuO0mK4Hudw7n6giAtxhdYiTo1eB1uiSMsrqmGKFnYIaRxFXNJHoOZggRUTWMsDPwKqUtQkjyBr0EZ7jwDWNkBu6_jQ_Wu87CZR-yC153cLkbbHTWGwvnXbYxwZ97r4fsDFyEfgjJTSB0HuY7C3-E1vpcJjHb3QW8ccMQjO6HMV1A7Vu40sWiuM77_W2rO_0avNjoLtk3x_Mc_P68_LW4qVbfv3xdzFeV4ZLkSoqmZtSiDbe8lkZjS6lcG9a2jBkskWHUMLnmuly0TSuJ4LQxvKWEYG7lmp6D64PvMK5725oSssRQQ3S9jnsVtFP_Try7U7fhQVEkBOJF__Goj-F-tCmr3iVju057G8akBGZCciyeBLEkdQknC_jhP3AbxlhePCmCMBFNQ3GBrg6QiSGlaDePiTFSU-dq6lydOi-K938veuKPJRcAHoFJebJDitQK15hOO3x6AlGbsSufYZcL--7AblMO8RGmmEnMKP0DnOzLKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201278831</pqid></control><display><type>article</type><title>Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Poeggel, Gerd ; Helmeke, Carina ; Abraham, Andreas ; Schwabe, Tina ; Friedrich, Patricia ; Braun, Katharina</creator><creatorcontrib>Poeggel, Gerd ; Helmeke, Carina ; Abraham, Andreas ; Schwabe, Tina ; Friedrich, Patricia ; Braun, Katharina</creatorcontrib><description>A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments). Increased spine densities were also observed on the hippocampal CA1 pyramidal neurons (up to 109% on the distal apical segments and up to 106% on the basal segment) compared with the control group. In contrast, significantly reduced spine densities were observed on the granule cell dendrites in the dentate gyrus (down to 92%) and on the apical dendrites in the medial nucleus of the amygdala (down to 95%). No significant changes of spine densities were seen in the somatosensory cortex (except for an increase in the proximal apical segments) and in the lateral nucleus of the dorsal amygdala (except for an increase in the proximal basal dendritic segments). These results demonstrate that repeated stressful emotional experience alters the balance of presumably excitatory synaptic inputs of pyramidal neurons in the limbic system. Such experience-induced modulations of limbic circuits may determine psychosocial and cognitive capacities during later life.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2434663100</identifier><identifier>PMID: 14668442</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amygdala ; Amygdala - physiology ; Animals ; Behavioral neuroscience ; Biological Sciences ; Body Constitution ; Brain Mapping ; Cerebral Cortex - physiology ; Cognition &amp; reasoning ; Control groups ; Dendrites ; Emotions - physiology ; Hippocampus ; Hippocampus - physiology ; Neurons ; Octodon degus ; Psychological stress ; Psychology ; Pyramidal cells ; Pyramidal Cells - cytology ; Rodentia ; Rodents ; Stress ; Synapses - physiology ; Synapses - ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.16137-16142</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 23, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-978643e0f5e569ca1e339bc4dd44c190c43c49b5add4d8d927538c5d32215e9b3</citedby><cites>FETCH-LOGICAL-c592t-978643e0f5e569ca1e339bc4dd44c190c43c49b5add4d8d927538c5d32215e9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3149143$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3149143$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14668442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poeggel, Gerd</creatorcontrib><creatorcontrib>Helmeke, Carina</creatorcontrib><creatorcontrib>Abraham, Andreas</creatorcontrib><creatorcontrib>Schwabe, Tina</creatorcontrib><creatorcontrib>Friedrich, Patricia</creatorcontrib><creatorcontrib>Braun, Katharina</creatorcontrib><title>Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments). Increased spine densities were also observed on the hippocampal CA1 pyramidal neurons (up to 109% on the distal apical segments and up to 106% on the basal segment) compared with the control group. In contrast, significantly reduced spine densities were observed on the granule cell dendrites in the dentate gyrus (down to 92%) and on the apical dendrites in the medial nucleus of the amygdala (down to 95%). No significant changes of spine densities were seen in the somatosensory cortex (except for an increase in the proximal apical segments) and in the lateral nucleus of the dorsal amygdala (except for an increase in the proximal basal dendritic segments). These results demonstrate that repeated stressful emotional experience alters the balance of presumably excitatory synaptic inputs of pyramidal neurons in the limbic system. Such experience-induced modulations of limbic circuits may determine psychosocial and cognitive capacities during later life.</description><subject>Amygdala</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Body Constitution</subject><subject>Brain Mapping</subject><subject>Cerebral Cortex - physiology</subject><subject>Cognition &amp; reasoning</subject><subject>Control groups</subject><subject>Dendrites</subject><subject>Emotions - physiology</subject><subject>Hippocampus</subject><subject>Hippocampus - physiology</subject><subject>Neurons</subject><subject>Octodon degus</subject><subject>Psychological stress</subject><subject>Psychology</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - cytology</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Stress</subject><subject>Synapses - physiology</subject><subject>Synapses - ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktrGzEUhUVpady0625KEV0UCplEz9FokYUxbtNiKPSxFrJGTmRmpImkCfa_rwabuO0mK4Hudw7n6giAtxhdYiTo1eB1uiSMsrqmGKFnYIaRxFXNJHoOZggRUTWMsDPwKqUtQkjyBr0EZ7jwDWNkBu6_jQ_Wu87CZR-yC153cLkbbHTWGwvnXbYxwZ97r4fsDFyEfgjJTSB0HuY7C3-E1vpcJjHb3QW8ccMQjO6HMV1A7Vu40sWiuM77_W2rO_0avNjoLtk3x_Mc_P68_LW4qVbfv3xdzFeV4ZLkSoqmZtSiDbe8lkZjS6lcG9a2jBkskWHUMLnmuly0TSuJ4LQxvKWEYG7lmp6D64PvMK5725oSssRQQ3S9jnsVtFP_Try7U7fhQVEkBOJF__Goj-F-tCmr3iVju057G8akBGZCciyeBLEkdQknC_jhP3AbxlhePCmCMBFNQ3GBrg6QiSGlaDePiTFSU-dq6lydOi-K938veuKPJRcAHoFJebJDitQK15hOO3x6AlGbsSufYZcL--7AblMO8RGmmEnMKP0DnOzLKw</recordid><startdate>20031223</startdate><enddate>20031223</enddate><creator>Poeggel, Gerd</creator><creator>Helmeke, Carina</creator><creator>Abraham, Andreas</creator><creator>Schwabe, Tina</creator><creator>Friedrich, Patricia</creator><creator>Braun, Katharina</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031223</creationdate><title>Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala</title><author>Poeggel, Gerd ; Helmeke, Carina ; Abraham, Andreas ; Schwabe, Tina ; Friedrich, Patricia ; Braun, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-978643e0f5e569ca1e339bc4dd44c190c43c49b5add4d8d927538c5d32215e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amygdala</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Body Constitution</topic><topic>Brain Mapping</topic><topic>Cerebral Cortex - physiology</topic><topic>Cognition &amp; reasoning</topic><topic>Control groups</topic><topic>Dendrites</topic><topic>Emotions - physiology</topic><topic>Hippocampus</topic><topic>Hippocampus - physiology</topic><topic>Neurons</topic><topic>Octodon degus</topic><topic>Psychological stress</topic><topic>Psychology</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - cytology</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Stress</topic><topic>Synapses - physiology</topic><topic>Synapses - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poeggel, Gerd</creatorcontrib><creatorcontrib>Helmeke, Carina</creatorcontrib><creatorcontrib>Abraham, Andreas</creatorcontrib><creatorcontrib>Schwabe, Tina</creatorcontrib><creatorcontrib>Friedrich, Patricia</creatorcontrib><creatorcontrib>Braun, Katharina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poeggel, Gerd</au><au>Helmeke, Carina</au><au>Abraham, Andreas</au><au>Schwabe, Tina</au><au>Friedrich, Patricia</au><au>Braun, Katharina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-23</date><risdate>2003</risdate><volume>100</volume><issue>26</issue><spage>16137</spage><epage>16142</epage><pages>16137-16142</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A quantitative anatomical study in the rodent anterior cingulate and somatosensory cortex, hippocampus, and lateral amygdala revealed region-, cell-, and dendrite-specific changes of spine densities in 3-week-old Octodon degus after repeated parental separation. In parentally separated animals significantly higher spine densities were found on the apical and basal dendrites of the cingulate cortex (up to 143% on apical and 138% on basal dendrite). Branching order analysis revealed that this effect is seen on all segments of the apical dendrite, whereas on the basal dendrites significantly higher spine densities were seen only on the outer branches (third to fifth dendritic segments). Increased spine densities were also observed on the hippocampal CA1 pyramidal neurons (up to 109% on the distal apical segments and up to 106% on the basal segment) compared with the control group. In contrast, significantly reduced spine densities were observed on the granule cell dendrites in the dentate gyrus (down to 92%) and on the apical dendrites in the medial nucleus of the amygdala (down to 95%). No significant changes of spine densities were seen in the somatosensory cortex (except for an increase in the proximal apical segments) and in the lateral nucleus of the dorsal amygdala (except for an increase in the proximal basal dendritic segments). These results demonstrate that repeated stressful emotional experience alters the balance of presumably excitatory synaptic inputs of pyramidal neurons in the limbic system. Such experience-induced modulations of limbic circuits may determine psychosocial and cognitive capacities during later life.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14668442</pmid><doi>10.1073/pnas.2434663100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.16137-16142
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_2434663100
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amygdala
Amygdala - physiology
Animals
Behavioral neuroscience
Biological Sciences
Body Constitution
Brain Mapping
Cerebral Cortex - physiology
Cognition & reasoning
Control groups
Dendrites
Emotions - physiology
Hippocampus
Hippocampus - physiology
Neurons
Octodon degus
Psychological stress
Psychology
Pyramidal cells
Pyramidal Cells - cytology
Rodentia
Rodents
Stress
Synapses - physiology
Synapses - ultrastructure
title Juvenile Emotional Experience Alters Synaptic Composition in the Rodent Cortex, Hippocampus, and Lateral Amygdala
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Juvenile%20Emotional%20Experience%20Alters%20Synaptic%20Composition%20in%20the%20Rodent%20Cortex,%20Hippocampus,%20and%20Lateral%20Amygdala&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Poeggel,%20Gerd&rft.date=2003-12-23&rft.volume=100&rft.issue=26&rft.spage=16137&rft.epage=16142&rft.pages=16137-16142&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2434663100&rft_dat=%3Cjstor_cross%3E3149143%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201278831&rft_id=info:pmid/14668442&rft_jstor_id=3149143&rfr_iscdi=true