Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A

The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (25), p.14725-14730
Hauptverfasser: Knight, John B., Eyster, Craig A., Griesel, Beth A., Olson, Ann Louise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14730
container_issue 25
container_start_page 14725
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Knight, John B.
Eyster, Craig A.
Griesel, Beth A.
Olson, Ann Louise
description The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain I and the myocyte enhancer factor 2 (MEF2) domain. The MEF2 domain binds transcription factors MEF2A and MEF2D in vivo. Domain I binds a transcription factor, GLUT4 enhancer factor (GEF). In this report, we show a restricted pattern of GEF expression in human tissues, which overlaps with MEF2A only in tissues expressing high levels of GLUT4, suggesting the hypothesis that GEF and MEF2A function together to activate GLUT4 transcription. Data obtained from transiently transfected cells support this hypothesis. Neither GEF nor MEF2A alone significantly activated GLUT4 promoter activity, but increased promoter activity 4- to 5-fold when expressed together. Deletion of the GEF-binding domain (domain I) and the MEF2-binding domain prevented activation, strengthening the conclusion that promoter regulation occurs through these elements. GEF and MEF2A, isolated from nuclei of transfected cells, bound domain I and the MEF2 domain, respectively, which is consistent with activation through these regulatory elements. Finally, GEF and MEF2A coimmunoprecipitated in vivo, strongly supporting a mechanism of GLUT4 transcription activation that depends on this protein-protein interaction.
doi_str_mv 10.1073/pnas.2432756100
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_2432756100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148502</jstor_id><sourcerecordid>3148502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-d0c9e9c8905a1a6ee78e2f8c81311badb93e75e8a951e6d657af9ef1fbd86fba3</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBmALgWgInLkgZHGoxCGt7f2ykThEVZtWCgKh9GzNemebjTZ2antLI_48Doka4MLFljzPjC2_hLzl7IyzKjvfWAhnIs9EVZScsWdkxJnikzJX7DkZMSaqicxFfkJehbBijKlCspfkhOdlxlSuRuTnd7wbeoids9S1NC6RXg9rsHQ2v13kdIYW6Tfv1i6i_0RvbNrA_NY1xh-IlgJdeLDB-G6zO4eeThN4gOg8BdvQL1tnthHppV2CNejpVRqQamL6mrxooQ_45rCPye3V5eLiejL_Oru5mM4nphBlnDTMKFRGKlYAhxKxkihaaSTPOK-hqVWGVYESVMGxbMqiglZhy9u6kWVbQzYmn_dzN0O9xsagjR56vfHdGvxWO-j03xXbLfWde9BCqSrdMianh37v7gcMUa-7YLDvwaIbguZKFFIpleCHf-DKDT59SdCCcSGzPNuh8z0y3oXgsX16CGd6F6rehaqPoaaO93--_-gPKSbw8QB2ncdxTIsiqSqt7dD3ER9jsvQ_NpF3e7IKKagnk_FcFkxkvwD_r8Hz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201283439</pqid></control><display><type>article</type><title>Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Knight, John B. ; Eyster, Craig A. ; Griesel, Beth A. ; Olson, Ann Louise</creator><creatorcontrib>Knight, John B. ; Eyster, Craig A. ; Griesel, Beth A. ; Olson, Ann Louise</creatorcontrib><description>The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain I and the myocyte enhancer factor 2 (MEF2) domain. The MEF2 domain binds transcription factors MEF2A and MEF2D in vivo. Domain I binds a transcription factor, GLUT4 enhancer factor (GEF). In this report, we show a restricted pattern of GEF expression in human tissues, which overlaps with MEF2A only in tissues expressing high levels of GLUT4, suggesting the hypothesis that GEF and MEF2A function together to activate GLUT4 transcription. Data obtained from transiently transfected cells support this hypothesis. Neither GEF nor MEF2A alone significantly activated GLUT4 promoter activity, but increased promoter activity 4- to 5-fold when expressed together. Deletion of the GEF-binding domain (domain I) and the MEF2-binding domain prevented activation, strengthening the conclusion that promoter regulation occurs through these elements. GEF and MEF2A, isolated from nuclei of transfected cells, bound domain I and the MEF2 domain, respectively, which is consistent with activation through these regulatory elements. Finally, GEF and MEF2A coimmunoprecipitated in vivo, strongly supporting a mechanism of GLUT4 transcription activation that depends on this protein-protein interaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2432756100</identifier><identifier>PMID: 14630949</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biochemistry ; Biological Sciences ; Blotting, Northern ; Blotting, Western ; Cell Nucleus - metabolism ; COS Cells ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; GEF protein ; Gene Expression Regulation ; Genes ; Genes, Reporter ; Genetics ; Glucose - metabolism ; Glucose Transporter Type 4 ; GLUT4 gene ; Glutathione Transferase - metabolism ; Green Fluorescent Proteins ; Humans ; Insulin ; Luminescent Proteins - metabolism ; MADS Domain Proteins ; MEF2 Transcription Factors ; MEF2A protein ; Messenger RNA ; Mice ; Mice, Transgenic ; Microscopy, Confocal ; Monosaccharide Transport Proteins - genetics ; Muscle Proteins ; Myogenic Regulatory Factors ; Plasmids ; Precipitin Tests ; Promoter Regions, Genetic ; Protein Binding ; Protein isoforms ; Protein Structure, Tertiary ; Proteins ; Recombinant Fusion Proteins - metabolism ; Skeletal muscle ; Tissue Distribution ; Transcription factors ; Transcription Factors - biosynthesis ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcription, Genetic ; Transcriptional Activation ; Transcriptional regulatory elements ; Transfection ; Transgenic animals</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (25), p.14725-14730</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-d0c9e9c8905a1a6ee78e2f8c81311badb93e75e8a951e6d657af9ef1fbd86fba3</citedby><cites>FETCH-LOGICAL-c526t-d0c9e9c8905a1a6ee78e2f8c81311badb93e75e8a951e6d657af9ef1fbd86fba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148502$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148502$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14630949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, John B.</creatorcontrib><creatorcontrib>Eyster, Craig A.</creatorcontrib><creatorcontrib>Griesel, Beth A.</creatorcontrib><creatorcontrib>Olson, Ann Louise</creatorcontrib><title>Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain I and the myocyte enhancer factor 2 (MEF2) domain. The MEF2 domain binds transcription factors MEF2A and MEF2D in vivo. Domain I binds a transcription factor, GLUT4 enhancer factor (GEF). In this report, we show a restricted pattern of GEF expression in human tissues, which overlaps with MEF2A only in tissues expressing high levels of GLUT4, suggesting the hypothesis that GEF and MEF2A function together to activate GLUT4 transcription. Data obtained from transiently transfected cells support this hypothesis. Neither GEF nor MEF2A alone significantly activated GLUT4 promoter activity, but increased promoter activity 4- to 5-fold when expressed together. Deletion of the GEF-binding domain (domain I) and the MEF2-binding domain prevented activation, strengthening the conclusion that promoter regulation occurs through these elements. GEF and MEF2A, isolated from nuclei of transfected cells, bound domain I and the MEF2 domain, respectively, which is consistent with activation through these regulatory elements. Finally, GEF and MEF2A coimmunoprecipitated in vivo, strongly supporting a mechanism of GLUT4 transcription activation that depends on this protein-protein interaction.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Cell Nucleus - metabolism</subject><subject>COS Cells</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>GEF protein</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Genetics</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 4</subject><subject>GLUT4 gene</subject><subject>Glutathione Transferase - metabolism</subject><subject>Green Fluorescent Proteins</subject><subject>Humans</subject><subject>Insulin</subject><subject>Luminescent Proteins - metabolism</subject><subject>MADS Domain Proteins</subject><subject>MEF2 Transcription Factors</subject><subject>MEF2A protein</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Microscopy, Confocal</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Muscle Proteins</subject><subject>Myogenic Regulatory Factors</subject><subject>Plasmids</subject><subject>Precipitin Tests</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding</subject><subject>Protein isoforms</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Skeletal muscle</subject><subject>Tissue Distribution</subject><subject>Transcription factors</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><subject>Transcriptional regulatory elements</subject><subject>Transfection</subject><subject>Transgenic animals</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vEzEQBmALgWgInLkgZHGoxCGt7f2ykThEVZtWCgKh9GzNemebjTZ2antLI_48Doka4MLFljzPjC2_hLzl7IyzKjvfWAhnIs9EVZScsWdkxJnikzJX7DkZMSaqicxFfkJehbBijKlCspfkhOdlxlSuRuTnd7wbeoids9S1NC6RXg9rsHQ2v13kdIYW6Tfv1i6i_0RvbNrA_NY1xh-IlgJdeLDB-G6zO4eeThN4gOg8BdvQL1tnthHppV2CNejpVRqQamL6mrxooQ_45rCPye3V5eLiejL_Oru5mM4nphBlnDTMKFRGKlYAhxKxkihaaSTPOK-hqVWGVYESVMGxbMqiglZhy9u6kWVbQzYmn_dzN0O9xsagjR56vfHdGvxWO-j03xXbLfWde9BCqSrdMianh37v7gcMUa-7YLDvwaIbguZKFFIpleCHf-DKDT59SdCCcSGzPNuh8z0y3oXgsX16CGd6F6rehaqPoaaO93--_-gPKSbw8QB2ncdxTIsiqSqt7dD3ER9jsvQ_NpF3e7IKKagnk_FcFkxkvwD_r8Hz</recordid><startdate>20031209</startdate><enddate>20031209</enddate><creator>Knight, John B.</creator><creator>Eyster, Craig A.</creator><creator>Griesel, Beth A.</creator><creator>Olson, Ann Louise</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20031209</creationdate><title>Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A</title><author>Knight, John B. ; Eyster, Craig A. ; Griesel, Beth A. ; Olson, Ann Louise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-d0c9e9c8905a1a6ee78e2f8c81311badb93e75e8a951e6d657af9ef1fbd86fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Cell Nucleus - metabolism</topic><topic>COS Cells</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>GEF protein</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Genetics</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 4</topic><topic>GLUT4 gene</topic><topic>Glutathione Transferase - metabolism</topic><topic>Green Fluorescent Proteins</topic><topic>Humans</topic><topic>Insulin</topic><topic>Luminescent Proteins - metabolism</topic><topic>MADS Domain Proteins</topic><topic>MEF2 Transcription Factors</topic><topic>MEF2A protein</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Microscopy, Confocal</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Muscle Proteins</topic><topic>Myogenic Regulatory Factors</topic><topic>Plasmids</topic><topic>Precipitin Tests</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding</topic><topic>Protein isoforms</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Skeletal muscle</topic><topic>Tissue Distribution</topic><topic>Transcription factors</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><topic>Transcriptional regulatory elements</topic><topic>Transfection</topic><topic>Transgenic animals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, John B.</creatorcontrib><creatorcontrib>Eyster, Craig A.</creatorcontrib><creatorcontrib>Griesel, Beth A.</creatorcontrib><creatorcontrib>Olson, Ann Louise</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, John B.</au><au>Eyster, Craig A.</au><au>Griesel, Beth A.</au><au>Olson, Ann Louise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-09</date><risdate>2003</risdate><volume>100</volume><issue>25</issue><spage>14725</spage><epage>14730</epage><pages>14725-14730</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The GLUT4 gene is subject to complex tissue-specific and metabolic regulation, with a profound impact on insulin-mediated glucose disposal. We have shown, by using transgenic mice, that the human GLUT4 promoter is regulated through the cooperative function of two distinct regulatory elements, domain I and the myocyte enhancer factor 2 (MEF2) domain. The MEF2 domain binds transcription factors MEF2A and MEF2D in vivo. Domain I binds a transcription factor, GLUT4 enhancer factor (GEF). In this report, we show a restricted pattern of GEF expression in human tissues, which overlaps with MEF2A only in tissues expressing high levels of GLUT4, suggesting the hypothesis that GEF and MEF2A function together to activate GLUT4 transcription. Data obtained from transiently transfected cells support this hypothesis. Neither GEF nor MEF2A alone significantly activated GLUT4 promoter activity, but increased promoter activity 4- to 5-fold when expressed together. Deletion of the GEF-binding domain (domain I) and the MEF2-binding domain prevented activation, strengthening the conclusion that promoter regulation occurs through these elements. GEF and MEF2A, isolated from nuclei of transfected cells, bound domain I and the MEF2 domain, respectively, which is consistent with activation through these regulatory elements. Finally, GEF and MEF2A coimmunoprecipitated in vivo, strongly supporting a mechanism of GLUT4 transcription activation that depends on this protein-protein interaction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14630949</pmid><doi>10.1073/pnas.2432756100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (25), p.14725-14730
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_2432756100
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animals
Biochemistry
Biological Sciences
Blotting, Northern
Blotting, Western
Cell Nucleus - metabolism
COS Cells
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
GEF protein
Gene Expression Regulation
Genes
Genes, Reporter
Genetics
Glucose - metabolism
Glucose Transporter Type 4
GLUT4 gene
Glutathione Transferase - metabolism
Green Fluorescent Proteins
Humans
Insulin
Luminescent Proteins - metabolism
MADS Domain Proteins
MEF2 Transcription Factors
MEF2A protein
Messenger RNA
Mice
Mice, Transgenic
Microscopy, Confocal
Monosaccharide Transport Proteins - genetics
Muscle Proteins
Myogenic Regulatory Factors
Plasmids
Precipitin Tests
Promoter Regions, Genetic
Protein Binding
Protein isoforms
Protein Structure, Tertiary
Proteins
Recombinant Fusion Proteins - metabolism
Skeletal muscle
Tissue Distribution
Transcription factors
Transcription Factors - biosynthesis
Transcription Factors - chemistry
Transcription Factors - metabolism
Transcription, Genetic
Transcriptional Activation
Transcriptional regulatory elements
Transfection
Transgenic animals
title Regulation of the Human GLUT4 Gene Promoter: Interaction between a Transcriptional Activator and Myocyte Enhancer Factor 2A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20the%20Human%20GLUT4%20Gene%20Promoter:%20Interaction%20between%20a%20Transcriptional%20Activator%20and%20Myocyte%20Enhancer%20Factor%202A&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Knight,%20John%20B.&rft.date=2003-12-09&rft.volume=100&rft.issue=25&rft.spage=14725&rft.epage=14730&rft.pages=14725-14730&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2432756100&rft_dat=%3Cjstor_cross%3E3148502%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201283439&rft_id=info:pmid/14630949&rft_jstor_id=3148502&rfr_iscdi=true