Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis
Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-11, Vol.98 (24), p.13942-13947 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13947 |
---|---|
container_issue | 24 |
container_start_page | 13942 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Beeton, Christine Wulff, Heike Barbaria, Jocelyne Clot-Faybesse, Olivier Pennington, Michael Bernard, Dominique Cahalan, Michael D. Chandy, K. George Béraud, Evelyne |
description | Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype ("chronically activated") with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca2+-activated K+channels (≈50-120 per cell). In contrast, resting T cells displayed 0-10 Kvl.3 and 10-20 IKCal channels per cell ("quiescent" phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell ("acutely activated" phenotype). Consistent with their channel phenotype, [3H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap22) engineered to be highly specific for Kv1.3, but not by a selective IKCa1 blocker (TRAM-34). The combination of ShK-Dap22and TRAM-34 enhanced the suppression of MBP-stimulated T cell proliferation. Based on these in vitro results, we assessed the efficacy of K+channel blockers in AT-EAE. Specific and simultaneous blockade of the T cell channels by ShK or by a combination of ShK-Dap22plus TRAM-34 prevented lethal AT-EAE. Blockade of Kv1.3 alone with ShK-Dap22, but not of IKCa1 with TRAM-34, was also effective. When administered after the onset of symptoms, ShK or the combination of ShK-Dap22plus TRAM-34 greatly ameliorated the clinical course of both moderate and severe AT-EAE. We conclude that selective targeting of Kv1.3, alone or with IKCa1, may provide an effective new mode of therapy for multiple sclerosis. |
doi_str_mv | 10.1073/pnas.241497298 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_241497298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3057199</jstor_id><sourcerecordid>3057199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f283fe3bf6f882829d623964f7f17487d36a1aafd98269686512577334704253</originalsourceid><addsrcrecordid>eNp9kUuP0zAUhSMEYsrAlhUCixUSpPgVPyQ2pSoP0RGL6d7yJNc0xYlD7Iyma_44rloKbFjdxf3O0Tk6RfGU4DnBkr0dehvnlBOuJdXqXjEjWJNScI3vFzOMqSwVp_yieBTjDmOsK4UfFheESCJ5RWbFz2vwUKf2FtB7H-rvtgEUHNqg9b4btqHeJ0BfXi-3tu_BR7TowLdhtAkiWt0NMLYd9Ml6tJhSaLtu6gGt-hqGrfWh22c4tfENWqCr0IBHLozoavKpHTyg69rDGGIbHxcPnPURnpzuZbH5sNosP5Xrrx8_LxfrsuZKp9JRxRywGyecUlRR3QjKtOBOulxGyYYJS6x1jVZUaKFERWglJWNcYk4rdlm8O9oO000HTZ2Dj9abIXew494E25p_P327Nd_CrRGEcJHlL0_yMfyYICazC9PY58CGYsIEEVpmaH6E6twsjuDO9gSbw2DmMJg5D5YFz_8O9Qc_LZSBFyfgIPz91ip7GMI0p5l49X_CuMn7BHcpo8-O6C6mMJ5ZhitJtGa_AM-etRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201361697</pqid></control><display><type>article</type><title>Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Beeton, Christine ; Wulff, Heike ; Barbaria, Jocelyne ; Clot-Faybesse, Olivier ; Pennington, Michael ; Bernard, Dominique ; Cahalan, Michael D. ; Chandy, K. George ; Béraud, Evelyne</creator><creatorcontrib>Beeton, Christine ; Wulff, Heike ; Barbaria, Jocelyne ; Clot-Faybesse, Olivier ; Pennington, Michael ; Bernard, Dominique ; Cahalan, Michael D. ; Chandy, K. George ; Béraud, Evelyne</creatorcontrib><description>Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype ("chronically activated") with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca2+-activated K+channels (≈50-120 per cell). In contrast, resting T cells displayed 0-10 Kvl.3 and 10-20 IKCal channels per cell ("quiescent" phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell ("acutely activated" phenotype). Consistent with their channel phenotype, [3H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap22) engineered to be highly specific for Kv1.3, but not by a selective IKCa1 blocker (TRAM-34). The combination of ShK-Dap22and TRAM-34 enhanced the suppression of MBP-stimulated T cell proliferation. Based on these in vitro results, we assessed the efficacy of K+channel blockers in AT-EAE. Specific and simultaneous blockade of the T cell channels by ShK or by a combination of ShK-Dap22plus TRAM-34 prevented lethal AT-EAE. Blockade of Kv1.3 alone with ShK-Dap22, but not of IKCa1 with TRAM-34, was also effective. When administered after the onset of symptoms, ShK or the combination of ShK-Dap22plus TRAM-34 greatly ameliorated the clinical course of both moderate and severe AT-EAE. We conclude that selective targeting of Kv1.3, alone or with IKCa1, may provide an effective new mode of therapy for multiple sclerosis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.241497298</identifier><identifier>PMID: 11717451</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject><![CDATA[Adoptive transfer ; Animals ; Biological Sciences ; Calcium Channel Blockers - administration & dosage ; Calcium Channel Blockers - pharmacokinetics ; Calcium Channel Blockers - pharmacology ; CD4-Positive T-Lymphocytes - cytology ; CD4-Positive T-Lymphocytes - drug effects ; CD4-Positive T-Lymphocytes - metabolism ; Cell lines ; Cells, Cultured ; Channel blockers ; Cnidarian Venoms - administration & dosage ; Cnidarian Venoms - pharmacokinetics ; Cnidarian Venoms - pharmacology ; Disease ; Disease models ; Disease Models, Animal ; Encephalomyelitis, Autoimmune, Experimental - metabolism ; Encephalomyelitis, Autoimmune, Experimental - prevention & control ; Female ; Guinea Pigs ; Inhibitory concentration 50 ; Intermediate-Conductance Calcium-Activated Potassium Channels ; Isotope Labeling ; Kv1.3 Potassium Channel ; Multiple sclerosis ; Multiple Sclerosis - metabolism ; Multiple Sclerosis - prevention & control ; Nervous system diseases ; Phenotype ; Phenotypes ; Potassium Channel Blockers - administration & dosage ; Potassium Channel Blockers - pharmacokinetics ; Potassium Channel Blockers - pharmacology ; Potassium Channels - metabolism ; Potassium Channels, Voltage-Gated ; Preventive medicine ; Proteins ; Pyrazoles - administration & dosage ; Pyrazoles - pharmacokinetics ; Pyrazoles - pharmacology ; Rats ; Rats, Inbred Lew ; Rodents ; T lymphocytes ; Thymidine - metabolism ; Tritium - metabolism]]></subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-11, Vol.98 (24), p.13942-13947</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 20, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f283fe3bf6f882829d623964f7f17487d36a1aafd98269686512577334704253</citedby><cites>FETCH-LOGICAL-c489t-f283fe3bf6f882829d623964f7f17487d36a1aafd98269686512577334704253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3057199$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3057199$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11717451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beeton, Christine</creatorcontrib><creatorcontrib>Wulff, Heike</creatorcontrib><creatorcontrib>Barbaria, Jocelyne</creatorcontrib><creatorcontrib>Clot-Faybesse, Olivier</creatorcontrib><creatorcontrib>Pennington, Michael</creatorcontrib><creatorcontrib>Bernard, Dominique</creatorcontrib><creatorcontrib>Cahalan, Michael D.</creatorcontrib><creatorcontrib>Chandy, K. George</creatorcontrib><creatorcontrib>Béraud, Evelyne</creatorcontrib><title>Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype ("chronically activated") with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca2+-activated K+channels (≈50-120 per cell). In contrast, resting T cells displayed 0-10 Kvl.3 and 10-20 IKCal channels per cell ("quiescent" phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell ("acutely activated" phenotype). Consistent with their channel phenotype, [3H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap22) engineered to be highly specific for Kv1.3, but not by a selective IKCa1 blocker (TRAM-34). The combination of ShK-Dap22and TRAM-34 enhanced the suppression of MBP-stimulated T cell proliferation. Based on these in vitro results, we assessed the efficacy of K+channel blockers in AT-EAE. Specific and simultaneous blockade of the T cell channels by ShK or by a combination of ShK-Dap22plus TRAM-34 prevented lethal AT-EAE. Blockade of Kv1.3 alone with ShK-Dap22, but not of IKCa1 with TRAM-34, was also effective. When administered after the onset of symptoms, ShK or the combination of ShK-Dap22plus TRAM-34 greatly ameliorated the clinical course of both moderate and severe AT-EAE. We conclude that selective targeting of Kv1.3, alone or with IKCa1, may provide an effective new mode of therapy for multiple sclerosis.</description><subject>Adoptive transfer</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Calcium Channel Blockers - administration & dosage</subject><subject>Calcium Channel Blockers - pharmacokinetics</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>CD4-Positive T-Lymphocytes - cytology</subject><subject>CD4-Positive T-Lymphocytes - drug effects</subject><subject>CD4-Positive T-Lymphocytes - metabolism</subject><subject>Cell lines</subject><subject>Cells, Cultured</subject><subject>Channel blockers</subject><subject>Cnidarian Venoms - administration & dosage</subject><subject>Cnidarian Venoms - pharmacokinetics</subject><subject>Cnidarian Venoms - pharmacology</subject><subject>Disease</subject><subject>Disease models</subject><subject>Disease Models, Animal</subject><subject>Encephalomyelitis, Autoimmune, Experimental - metabolism</subject><subject>Encephalomyelitis, Autoimmune, Experimental - prevention & control</subject><subject>Female</subject><subject>Guinea Pigs</subject><subject>Inhibitory concentration 50</subject><subject>Intermediate-Conductance Calcium-Activated Potassium Channels</subject><subject>Isotope Labeling</subject><subject>Kv1.3 Potassium Channel</subject><subject>Multiple sclerosis</subject><subject>Multiple Sclerosis - metabolism</subject><subject>Multiple Sclerosis - prevention & control</subject><subject>Nervous system diseases</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Potassium Channel Blockers - administration & dosage</subject><subject>Potassium Channel Blockers - pharmacokinetics</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Preventive medicine</subject><subject>Proteins</subject><subject>Pyrazoles - administration & dosage</subject><subject>Pyrazoles - pharmacokinetics</subject><subject>Pyrazoles - pharmacology</subject><subject>Rats</subject><subject>Rats, Inbred Lew</subject><subject>Rodents</subject><subject>T lymphocytes</subject><subject>Thymidine - metabolism</subject><subject>Tritium - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuP0zAUhSMEYsrAlhUCixUSpPgVPyQ2pSoP0RGL6d7yJNc0xYlD7Iyma_44rloKbFjdxf3O0Tk6RfGU4DnBkr0dehvnlBOuJdXqXjEjWJNScI3vFzOMqSwVp_yieBTjDmOsK4UfFheESCJ5RWbFz2vwUKf2FtB7H-rvtgEUHNqg9b4btqHeJ0BfXi-3tu_BR7TowLdhtAkiWt0NMLYd9Ml6tJhSaLtu6gGt-hqGrfWh22c4tfENWqCr0IBHLozoavKpHTyg69rDGGIbHxcPnPURnpzuZbH5sNosP5Xrrx8_LxfrsuZKp9JRxRywGyecUlRR3QjKtOBOulxGyYYJS6x1jVZUaKFERWglJWNcYk4rdlm8O9oO000HTZ2Dj9abIXew494E25p_P327Nd_CrRGEcJHlL0_yMfyYICazC9PY58CGYsIEEVpmaH6E6twsjuDO9gSbw2DmMJg5D5YFz_8O9Qc_LZSBFyfgIPz91ip7GMI0p5l49X_CuMn7BHcpo8-O6C6mMJ5ZhitJtGa_AM-etRA</recordid><startdate>20011120</startdate><enddate>20011120</enddate><creator>Beeton, Christine</creator><creator>Wulff, Heike</creator><creator>Barbaria, Jocelyne</creator><creator>Clot-Faybesse, Olivier</creator><creator>Pennington, Michael</creator><creator>Bernard, Dominique</creator><creator>Cahalan, Michael D.</creator><creator>Chandy, K. George</creator><creator>Béraud, Evelyne</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20011120</creationdate><title>Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis</title><author>Beeton, Christine ; Wulff, Heike ; Barbaria, Jocelyne ; Clot-Faybesse, Olivier ; Pennington, Michael ; Bernard, Dominique ; Cahalan, Michael D. ; Chandy, K. George ; Béraud, Evelyne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f283fe3bf6f882829d623964f7f17487d36a1aafd98269686512577334704253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adoptive transfer</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Calcium Channel Blockers - administration & dosage</topic><topic>Calcium Channel Blockers - pharmacokinetics</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>CD4-Positive T-Lymphocytes - cytology</topic><topic>CD4-Positive T-Lymphocytes - drug effects</topic><topic>CD4-Positive T-Lymphocytes - metabolism</topic><topic>Cell lines</topic><topic>Cells, Cultured</topic><topic>Channel blockers</topic><topic>Cnidarian Venoms - administration & dosage</topic><topic>Cnidarian Venoms - pharmacokinetics</topic><topic>Cnidarian Venoms - pharmacology</topic><topic>Disease</topic><topic>Disease models</topic><topic>Disease Models, Animal</topic><topic>Encephalomyelitis, Autoimmune, Experimental - metabolism</topic><topic>Encephalomyelitis, Autoimmune, Experimental - prevention & control</topic><topic>Female</topic><topic>Guinea Pigs</topic><topic>Inhibitory concentration 50</topic><topic>Intermediate-Conductance Calcium-Activated Potassium Channels</topic><topic>Isotope Labeling</topic><topic>Kv1.3 Potassium Channel</topic><topic>Multiple sclerosis</topic><topic>Multiple Sclerosis - metabolism</topic><topic>Multiple Sclerosis - prevention & control</topic><topic>Nervous system diseases</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Potassium Channel Blockers - administration & dosage</topic><topic>Potassium Channel Blockers - pharmacokinetics</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Preventive medicine</topic><topic>Proteins</topic><topic>Pyrazoles - administration & dosage</topic><topic>Pyrazoles - pharmacokinetics</topic><topic>Pyrazoles - pharmacology</topic><topic>Rats</topic><topic>Rats, Inbred Lew</topic><topic>Rodents</topic><topic>T lymphocytes</topic><topic>Thymidine - metabolism</topic><topic>Tritium - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beeton, Christine</creatorcontrib><creatorcontrib>Wulff, Heike</creatorcontrib><creatorcontrib>Barbaria, Jocelyne</creatorcontrib><creatorcontrib>Clot-Faybesse, Olivier</creatorcontrib><creatorcontrib>Pennington, Michael</creatorcontrib><creatorcontrib>Bernard, Dominique</creatorcontrib><creatorcontrib>Cahalan, Michael D.</creatorcontrib><creatorcontrib>Chandy, K. George</creatorcontrib><creatorcontrib>Béraud, Evelyne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beeton, Christine</au><au>Wulff, Heike</au><au>Barbaria, Jocelyne</au><au>Clot-Faybesse, Olivier</au><au>Pennington, Michael</au><au>Bernard, Dominique</au><au>Cahalan, Michael D.</au><au>Chandy, K. George</au><au>Béraud, Evelyne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-11-20</date><risdate>2001</risdate><volume>98</volume><issue>24</issue><spage>13942</spage><epage>13947</epage><pages>13942-13947</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE), a disease resembling multiple sclerosis, is induced in rats by myelin basic protein (MBP)-activated CD4+T lymphocytes. By patch-clamp analysis, encephalitogenic rat T cells stimulated repeatedly in vitro expressed a unique channel phenotype ("chronically activated") with large numbers of Kv1.3 voltage-gated channels (≈1500 per cell) and small numbers of IKCa1 Ca2+-activated K+channels (≈50-120 per cell). In contrast, resting T cells displayed 0-10 Kvl.3 and 10-20 IKCal channels per cell ("quiescent" phenotype), whereas T cells stimulated once or twice expressed ≈200 Kv1.3 and ≈350 IKCa1 channels per cell ("acutely activated" phenotype). Consistent with their channel phenotype, [3H]thymidine incorporation by MBP-stimulated chronically activated T cells was suppressed by the peptide ShK, a blocker of Kv1.3 and IKCa1, and by an analog (ShK-Dap22) engineered to be highly specific for Kv1.3, but not by a selective IKCa1 blocker (TRAM-34). The combination of ShK-Dap22and TRAM-34 enhanced the suppression of MBP-stimulated T cell proliferation. Based on these in vitro results, we assessed the efficacy of K+channel blockers in AT-EAE. Specific and simultaneous blockade of the T cell channels by ShK or by a combination of ShK-Dap22plus TRAM-34 prevented lethal AT-EAE. Blockade of Kv1.3 alone with ShK-Dap22, but not of IKCa1 with TRAM-34, was also effective. When administered after the onset of symptoms, ShK or the combination of ShK-Dap22plus TRAM-34 greatly ameliorated the clinical course of both moderate and severe AT-EAE. We conclude that selective targeting of Kv1.3, alone or with IKCa1, may provide an effective new mode of therapy for multiple sclerosis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11717451</pmid><doi>10.1073/pnas.241497298</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-11, Vol.98 (24), p.13942-13947 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_241497298 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adoptive transfer Animals Biological Sciences Calcium Channel Blockers - administration & dosage Calcium Channel Blockers - pharmacokinetics Calcium Channel Blockers - pharmacology CD4-Positive T-Lymphocytes - cytology CD4-Positive T-Lymphocytes - drug effects CD4-Positive T-Lymphocytes - metabolism Cell lines Cells, Cultured Channel blockers Cnidarian Venoms - administration & dosage Cnidarian Venoms - pharmacokinetics Cnidarian Venoms - pharmacology Disease Disease models Disease Models, Animal Encephalomyelitis, Autoimmune, Experimental - metabolism Encephalomyelitis, Autoimmune, Experimental - prevention & control Female Guinea Pigs Inhibitory concentration 50 Intermediate-Conductance Calcium-Activated Potassium Channels Isotope Labeling Kv1.3 Potassium Channel Multiple sclerosis Multiple Sclerosis - metabolism Multiple Sclerosis - prevention & control Nervous system diseases Phenotype Phenotypes Potassium Channel Blockers - administration & dosage Potassium Channel Blockers - pharmacokinetics Potassium Channel Blockers - pharmacology Potassium Channels - metabolism Potassium Channels, Voltage-Gated Preventive medicine Proteins Pyrazoles - administration & dosage Pyrazoles - pharmacokinetics Pyrazoles - pharmacology Rats Rats, Inbred Lew Rodents T lymphocytes Thymidine - metabolism Tritium - metabolism |
title | Selective Blockade of T Lymphocyte K+Channels Ameliorates Experimental Autoimmune Encephalomyelitis, A Model for Multiple Sclerosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Blockade%20of%20T%20Lymphocyte%20K+Channels%20Ameliorates%20Experimental%20Autoimmune%20Encephalomyelitis,%20A%20Model%20for%20Multiple%20Sclerosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Beeton,%20Christine&rft.date=2001-11-20&rft.volume=98&rft.issue=24&rft.spage=13942&rft.epage=13947&rft.pages=13942-13947&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.241497298&rft_dat=%3Cjstor_cross%3E3057199%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201361697&rft_id=info:pmid/11717451&rft_jstor_id=3057199&rfr_iscdi=true |