Structural basis of σ 54 displacement and promoter escape in bacterial transcription

Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2024-01, Vol.121 (2), p.e2309670120
Hauptverfasser: Gao, Forson, Ye, Fuzhou, Zhang, Bowen, Cronin, Nora, Buck, Martin, Zhang, Xiaodong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e2309670120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 121
creator Gao, Forson
Ye, Fuzhou
Zhang, Bowen
Cronin, Nora
Buck, Martin
Zhang, Xiaodong
description Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ class, represented by the σ that regulates housekeeping genes. σ forms a class on its own and regulates stress response genes. Extensive studies on σ have revealed the molecular mechanisms of the σ dependent process while how σ transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ and upstream DNA, enabling the transition to elongation.
doi_str_mv 10.1073/pnas.2309670120
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_2309670120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38170755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1040-b0a3a93319856c4510d87cfdc126ec487d4fa3817c1cb0b74564686c7b99d1e43</originalsourceid><addsrcrecordid>eNpFkMtKAzEUhoMotlbX7iQvMO3J5L6UolUouNCuh8xJBiKdC8l04doH9JWcUi-rAz_n-_n5CLllsGSg-WroXF6WHKzSwEo4I3MGlhVKWDgnc4BSF0aUYkaucn4HACsNXJIZN0yDlnJOdq9jOuB4SG5Pa5djpn1Dvz6pFNTHPOwdhjZ0I3Wdp0Pq234MiYaMbgg0dhOCUxAneEyuy5jiMMa-uyYXjdvncPNzF2T3-PC2fiq2L5vn9f22QAYCihocd5ZzZo1UKCQDbzQ2HlmpAgqjvWjccSsyrKHWQiqhjEJdW-tZEHxBVqdeTH3OKTTVkGLr0kfFoDoKqo6Cqn9BE3F3IoZD3Qb_9_9rhH8De4liaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural basis of σ 54 displacement and promoter escape in bacterial transcription</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gao, Forson ; Ye, Fuzhou ; Zhang, Bowen ; Cronin, Nora ; Buck, Martin ; Zhang, Xiaodong</creator><creatorcontrib>Gao, Forson ; Ye, Fuzhou ; Zhang, Bowen ; Cronin, Nora ; Buck, Martin ; Zhang, Xiaodong</creatorcontrib><description>Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ class, represented by the σ that regulates housekeeping genes. σ forms a class on its own and regulates stress response genes. Extensive studies on σ have revealed the molecular mechanisms of the σ dependent process while how σ transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ and upstream DNA, enabling the transition to elongation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2309670120</identifier><identifier>PMID: 38170755</identifier><language>eng</language><publisher>United States</publisher><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2309670120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1040-b0a3a93319856c4510d87cfdc126ec487d4fa3817c1cb0b74564686c7b99d1e43</cites><orcidid>0000-0001-9786-7038 ; 0000-0002-7580-8982 ; 0000-0003-4724-1533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38170755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Forson</creatorcontrib><creatorcontrib>Ye, Fuzhou</creatorcontrib><creatorcontrib>Zhang, Bowen</creatorcontrib><creatorcontrib>Cronin, Nora</creatorcontrib><creatorcontrib>Buck, Martin</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><title>Structural basis of σ 54 displacement and promoter escape in bacterial transcription</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ class, represented by the σ that regulates housekeeping genes. σ forms a class on its own and regulates stress response genes. Extensive studies on σ have revealed the molecular mechanisms of the σ dependent process while how σ transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ and upstream DNA, enabling the transition to elongation.</description><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMtKAzEUhoMotlbX7iQvMO3J5L6UolUouNCuh8xJBiKdC8l04doH9JWcUi-rAz_n-_n5CLllsGSg-WroXF6WHKzSwEo4I3MGlhVKWDgnc4BSF0aUYkaucn4HACsNXJIZN0yDlnJOdq9jOuB4SG5Pa5djpn1Dvz6pFNTHPOwdhjZ0I3Wdp0Pq234MiYaMbgg0dhOCUxAneEyuy5jiMMa-uyYXjdvncPNzF2T3-PC2fiq2L5vn9f22QAYCihocd5ZzZo1UKCQDbzQ2HlmpAgqjvWjccSsyrKHWQiqhjEJdW-tZEHxBVqdeTH3OKTTVkGLr0kfFoDoKqo6Cqn9BE3F3IoZD3Qb_9_9rhH8De4liaw</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Gao, Forson</creator><creator>Ye, Fuzhou</creator><creator>Zhang, Bowen</creator><creator>Cronin, Nora</creator><creator>Buck, Martin</creator><creator>Zhang, Xiaodong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9786-7038</orcidid><orcidid>https://orcid.org/0000-0002-7580-8982</orcidid><orcidid>https://orcid.org/0000-0003-4724-1533</orcidid></search><sort><creationdate>20240109</creationdate><title>Structural basis of σ 54 displacement and promoter escape in bacterial transcription</title><author>Gao, Forson ; Ye, Fuzhou ; Zhang, Bowen ; Cronin, Nora ; Buck, Martin ; Zhang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1040-b0a3a93319856c4510d87cfdc126ec487d4fa3817c1cb0b74564686c7b99d1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Forson</creatorcontrib><creatorcontrib>Ye, Fuzhou</creatorcontrib><creatorcontrib>Zhang, Bowen</creatorcontrib><creatorcontrib>Cronin, Nora</creatorcontrib><creatorcontrib>Buck, Martin</creatorcontrib><creatorcontrib>Zhang, Xiaodong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Forson</au><au>Ye, Fuzhou</au><au>Zhang, Bowen</au><au>Cronin, Nora</au><au>Buck, Martin</au><au>Zhang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of σ 54 displacement and promoter escape in bacterial transcription</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>121</volume><issue>2</issue><spage>e2309670120</spage><pages>e2309670120-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Gene transcription is a fundamental cellular process carried out by RNA polymerase (RNAP). Transcription initiation is highly regulated, and in bacteria, transcription initiation is mediated by sigma (σ) factors. σ recruits RNAP to the promoter DNA region, located upstream of the transcription start site (TSS) and facilitates open complex formation, where double-stranded DNA is opened up into a transcription bubble and template strand DNA is positioned inside RNAP for initial RNA synthesis. During initial transcription, RNAP remains bound to σ and upstream DNA, presumably with an enlarging transcription bubble. The release of RNAP from upstream DNA is required for promoter escape and processive transcription elongation. Bacteria sigma factors can be broadly separated into two classes with the majority belonging to the σ class, represented by the σ that regulates housekeeping genes. σ forms a class on its own and regulates stress response genes. Extensive studies on σ have revealed the molecular mechanisms of the σ dependent process while how σ transitions from initial transcription to elongation is currently unknown. Here, we present a series of cryo-electron microscopy structures of the RNAP-σ initial transcribing complexes with progressively longer RNA, which reveal structural changes that lead to promoter escape. Our data show that initially, the transcription bubble enlarges, DNA strands scrunch, reducing the interactions between σ and DNA strands in the transcription bubble. RNA extension and further DNA scrunching help to release RNAP from σ and upstream DNA, enabling the transition to elongation.</abstract><cop>United States</cop><pmid>38170755</pmid><doi>10.1073/pnas.2309670120</doi><orcidid>https://orcid.org/0000-0001-9786-7038</orcidid><orcidid>https://orcid.org/0000-0002-7580-8982</orcidid><orcidid>https://orcid.org/0000-0003-4724-1533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2024-01, Vol.121 (2), p.e2309670120
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_2309670120
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Structural basis of σ 54 displacement and promoter escape in bacterial transcription
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20%CF%83%2054%20displacement%20and%20promoter%20escape%20in%20bacterial%20transcription&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gao,%20Forson&rft.date=2024-01-09&rft.volume=121&rft.issue=2&rft.spage=e2309670120&rft.pages=e2309670120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2309670120&rft_dat=%3Cpubmed_cross%3E38170755%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38170755&rfr_iscdi=true