Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery

Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2023-04, Vol.120 (16), p.e2219395120
Hauptverfasser: Fan, Qianqian, Lv, Xucheng, Lu, Jun, Guo, Wei, Fu, Yongzhu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page e2219395120
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 120
creator Fan, Qianqian
Lv, Xucheng
Lu, Jun
Guo, Wei
Fu, Yongzhu
description Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS with sulfur vacancies (SVs-1T/2H-MoS ) decomposed from amorphous MoS achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS , and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.
doi_str_mv 10.1073/pnas.2219395120
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_2219395120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37040420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1500-a546ffaea1aec566f09d6e5da8df663f74e8fbd96740e0322655e1a27362bb123</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqWwZof8A2nHduI0S1SeUhELYB1NknFjlMSRnSJ1z4eTUh6rq5HuudIcxi4FzAWkatF3GOZSikxliZBwxKYCMhHpOINjNgWQabSMZTxhZyG8A0CWLOGUTVQKMcQSpuzzZtdha0ve1xiI04drtoN1HXeGP7kXrjiWpWt77CxVvNhx5zfYucoGaqizFfGWKovfCHVYNBTGrLErx3pP3jjf7g_uqazRb2hf4Y0dartteYHDQH53zk4MNoEufnLG3u5uX1cP0fr5_nF1vY5KkQBEmMTaGCQUSGWitYGs0pRUuKyM1sqkMS1NUWU6jYFASamThATKVGlZFEKqGVscdkvvQvBk8t7bFv0uF5DvfeZ7n_m_z5G4OhD9thgf_ev_ClRfw0d0pQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fan, Qianqian ; Lv, Xucheng ; Lu, Jun ; Guo, Wei ; Fu, Yongzhu</creator><creatorcontrib>Fan, Qianqian ; Lv, Xucheng ; Lu, Jun ; Guo, Wei ; Fu, Yongzhu</creatorcontrib><description>Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS with sulfur vacancies (SVs-1T/2H-MoS ) decomposed from amorphous MoS achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS , and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2219395120</identifier><identifier>PMID: 37040420</identifier><language>eng</language><publisher>United States</publisher><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2219395120</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1500-a546ffaea1aec566f09d6e5da8df663f74e8fbd96740e0322655e1a27362bb123</citedby><cites>FETCH-LOGICAL-c1500-a546ffaea1aec566f09d6e5da8df663f74e8fbd96740e0322655e1a27362bb123</cites><orcidid>0000-0003-3746-9884 ; 0000-0003-0858-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37040420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Qianqian</creatorcontrib><creatorcontrib>Lv, Xucheng</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><title>Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS with sulfur vacancies (SVs-1T/2H-MoS ) decomposed from amorphous MoS achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS , and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.</description><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqWwZof8A2nHduI0S1SeUhELYB1NknFjlMSRnSJ1z4eTUh6rq5HuudIcxi4FzAWkatF3GOZSikxliZBwxKYCMhHpOINjNgWQabSMZTxhZyG8A0CWLOGUTVQKMcQSpuzzZtdha0ve1xiI04drtoN1HXeGP7kXrjiWpWt77CxVvNhx5zfYucoGaqizFfGWKovfCHVYNBTGrLErx3pP3jjf7g_uqazRb2hf4Y0dartteYHDQH53zk4MNoEufnLG3u5uX1cP0fr5_nF1vY5KkQBEmMTaGCQUSGWitYGs0pRUuKyM1sqkMS1NUWU6jYFASamThATKVGlZFEKqGVscdkvvQvBk8t7bFv0uF5DvfeZ7n_m_z5G4OhD9thgf_ev_ClRfw0d0pQ</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Fan, Qianqian</creator><creator>Lv, Xucheng</creator><creator>Lu, Jun</creator><creator>Guo, Wei</creator><creator>Fu, Yongzhu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3746-9884</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></search><sort><creationdate>20230418</creationdate><title>Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery</title><author>Fan, Qianqian ; Lv, Xucheng ; Lu, Jun ; Guo, Wei ; Fu, Yongzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1500-a546ffaea1aec566f09d6e5da8df663f74e8fbd96740e0322655e1a27362bb123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Qianqian</creatorcontrib><creatorcontrib>Lv, Xucheng</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Fu, Yongzhu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Qianqian</au><au>Lv, Xucheng</au><au>Lu, Jun</au><au>Guo, Wei</au><au>Fu, Yongzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2023-04-18</date><risdate>2023</risdate><volume>120</volume><issue>16</issue><spage>e2219395120</spage><pages>e2219395120-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Considerable efforts have been devoted to Li-S batteries, typically the soluble polysulfides shuttling effect. As a typical transition metal sulfide, MoS is a magic bullet for addressing the issues of Li-S batteries, drawing increasing attention. In this study, we introduce amorphous MoS as analogous sulfur cathode material and elucidate the dynamic phase evolution in the electrochemical reaction. The metallic 1T phase incorporated 2H phase MoS with sulfur vacancies (SVs-1T/2H-MoS ) decomposed from amorphous MoS achieves refined mixing with the "newborn" sulfur at the molecular level and supplies continuous conduction pathways and controllable physical confinement. Meanwhile, the in situ-generated SVs-1T/2H-MoS allows lithium intercalation in advance at high discharge voltage (≥1.8 V) and enables fast electron transfer. Moreover, aiming at the unbonded sulfur, diphenyl diselenide (PDSe), as a model redox mediator is applied, which can covalently bond sulfur atoms to form conversion-type organoselenosulfides, changing the original redox pathway of "newborn" sulfur in MoS , and suppressing the polysulfides shuttling effect. It also significantly lowers the activation energy and thus accelerates the sulfur reduction kinetics. Thus, the in situ-formed intercalation-conversion hybrid electrode of SVs-1T/2H-MoS and organoselenosulfides realizes enhanced rate capability and superior cycling stability. This work provides a novel concept for designing high-energy-density electrode materials.</abstract><cop>United States</cop><pmid>37040420</pmid><doi>10.1073/pnas.2219395120</doi><orcidid>https://orcid.org/0000-0003-3746-9884</orcidid><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2023-04, Vol.120 (16), p.e2219395120
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_2219395120
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Dynamic phase evolution of MoS 3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20phase%20evolution%20of%20MoS%203%20accompanied%20by%20organodiselenide%20mediation%20enables%20enhanced%20performance%20rechargeable%20lithium%20battery&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan,%20Qianqian&rft.date=2023-04-18&rft.volume=120&rft.issue=16&rft.spage=e2219395120&rft.pages=e2219395120-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2219395120&rft_dat=%3Cpubmed_cross%3E37040420%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37040420&rfr_iscdi=true