Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex
The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, te...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.13809-13814 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13814 |
---|---|
container_issue | 24 |
container_start_page | 13809 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Carvalho, Ana L. Fernando M. V. Dias José A. M. Prates Nagy, Tibor Gilbert, Harry J. Davies, Gideon J. Luís M. A. Ferreira Romão, Maria J. Carlos M. G. A. Fontes |
description | The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies. |
doi_str_mv | 10.1073/pnas.1936124100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1936124100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148869</jstor_id><sourcerecordid>3148869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgei2cOaCUMQBiUPa8Ucc-8ChWj6lSkhQcbWceMJmceKt7VTdf9-sdtUFLj1Zsp935Jkh5BWFcwo1v9iMNp1TzSVlggI8IQsKmpZSaHhKFgCsLpVg4oScprQGAF0peE5OqJCM65ouyK8lej_5kMKAxWVKODR-W_zAW7QeXdFsi7zCYhm3KVtf_MxxavMUsQjd_iGsMPVj-TG0fzD243wxbDzevSDPOusTvjycZ-T686fr5dfy6vuXb8vLq7KtNMulE6rCRvKubZ3VygG1vGkbqNDyrrK11kI66XSjhOpax5kGxhzUCHPHTvIz8mFfdjM1A7oWxxytN5vYDzZuTbC9-fdl7Ffmd7g1TPEK-Jx_d8jHcDNhymboUztPxI4YpmRqKhiHij0KqVZUsnoH3_4H12GK4zwDw4AyKWqxQxd71MaQUsTu4ccUzG6vZrdXc9zrnHjzd6NHf1jkDN4fwC55LAeGCUO5Am26yfuMd3m2xSN2Jq_3ZJ1yiA-GU6GU1PweAR3BiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201264742</pqid></control><display><type>article</type><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</creator><creatorcontrib>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</creatorcontrib><description>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1936124100</identifier><identifier>PMID: 14623971</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Atoms ; Bacteria ; Binding Sites ; Biochemistry ; Biological Sciences ; Cellulase - chemistry ; Cellulase - genetics ; Cellulase - metabolism ; Cellulosomes ; Cloning, Molecular ; Clostridium - enzymology ; Clostridium - genetics ; Clostridium thermocellum ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Enzymes ; Hydrogen bonds ; Ions ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecules ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Multiprotein Complexes ; Mutagenesis ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Proteins ; Species Specificity ; Static Electricity ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13809-13814</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 25, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</citedby><cites>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148869$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148869$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14623971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Ana L.</creatorcontrib><creatorcontrib>Fernando M. V. Dias</creatorcontrib><creatorcontrib>José A. M. Prates</creatorcontrib><creatorcontrib>Nagy, Tibor</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Davies, Gideon J.</creatorcontrib><creatorcontrib>Luís M. A. Ferreira</creatorcontrib><creatorcontrib>Romão, Maria J.</creatorcontrib><creatorcontrib>Carlos M. G. A. Fontes</creatorcontrib><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</description><subject>Amino Acid Sequence</subject><subject>Atoms</subject><subject>Bacteria</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cellulase - chemistry</subject><subject>Cellulase - genetics</subject><subject>Cellulase - metabolism</subject><subject>Cellulosomes</subject><subject>Cloning, Molecular</subject><subject>Clostridium - enzymology</subject><subject>Clostridium - genetics</subject><subject>Clostridium thermocellum</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Enzymes</subject><subject>Hydrogen bonds</subject><subject>Ions</subject><subject>Macromolecular Substances</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Multiprotein Complexes</subject><subject>Mutagenesis</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Species Specificity</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgei2cOaCUMQBiUPa8Ucc-8ChWj6lSkhQcbWceMJmceKt7VTdf9-sdtUFLj1Zsp935Jkh5BWFcwo1v9iMNp1TzSVlggI8IQsKmpZSaHhKFgCsLpVg4oScprQGAF0peE5OqJCM65ouyK8lej_5kMKAxWVKODR-W_zAW7QeXdFsi7zCYhm3KVtf_MxxavMUsQjd_iGsMPVj-TG0fzD243wxbDzevSDPOusTvjycZ-T686fr5dfy6vuXb8vLq7KtNMulE6rCRvKubZ3VygG1vGkbqNDyrrK11kI66XSjhOpax5kGxhzUCHPHTvIz8mFfdjM1A7oWxxytN5vYDzZuTbC9-fdl7Ffmd7g1TPEK-Jx_d8jHcDNhymboUztPxI4YpmRqKhiHij0KqVZUsnoH3_4H12GK4zwDw4AyKWqxQxd71MaQUsTu4ccUzG6vZrdXc9zrnHjzd6NHf1jkDN4fwC55LAeGCUO5Am26yfuMd3m2xSN2Jq_3ZJ1yiA-GU6GU1PweAR3BiQ</recordid><startdate>20031125</startdate><enddate>20031125</enddate><creator>Carvalho, Ana L.</creator><creator>Fernando M. V. Dias</creator><creator>José A. M. Prates</creator><creator>Nagy, Tibor</creator><creator>Gilbert, Harry J.</creator><creator>Davies, Gideon J.</creator><creator>Luís M. A. Ferreira</creator><creator>Romão, Maria J.</creator><creator>Carlos M. G. A. Fontes</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031125</creationdate><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><author>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Atoms</topic><topic>Bacteria</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cellulase - chemistry</topic><topic>Cellulase - genetics</topic><topic>Cellulase - metabolism</topic><topic>Cellulosomes</topic><topic>Cloning, Molecular</topic><topic>Clostridium - enzymology</topic><topic>Clostridium - genetics</topic><topic>Clostridium thermocellum</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Enzymes</topic><topic>Hydrogen bonds</topic><topic>Ions</topic><topic>Macromolecular Substances</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Multiprotein Complexes</topic><topic>Mutagenesis</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Species Specificity</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Ana L.</creatorcontrib><creatorcontrib>Fernando M. V. Dias</creatorcontrib><creatorcontrib>José A. M. Prates</creatorcontrib><creatorcontrib>Nagy, Tibor</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Davies, Gideon J.</creatorcontrib><creatorcontrib>Luís M. A. Ferreira</creatorcontrib><creatorcontrib>Romão, Maria J.</creatorcontrib><creatorcontrib>Carlos M. G. A. Fontes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Ana L.</au><au>Fernando M. V. Dias</au><au>José A. M. Prates</au><au>Nagy, Tibor</au><au>Gilbert, Harry J.</au><au>Davies, Gideon J.</au><au>Luís M. A. Ferreira</au><au>Romão, Maria J.</au><au>Carlos M. G. A. Fontes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-25</date><risdate>2003</risdate><volume>100</volume><issue>24</issue><spage>13809</spage><epage>13814</epage><pages>13809-13814</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14623971</pmid><doi>10.1073/pnas.1936124100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13809-13814 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1936124100 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Atoms Bacteria Binding Sites Biochemistry Biological Sciences Cellulase - chemistry Cellulase - genetics Cellulase - metabolism Cellulosomes Cloning, Molecular Clostridium - enzymology Clostridium - genetics Clostridium thermocellum Crystal structure Crystallography, X-Ray Crystals Enzymes Hydrogen bonds Ions Macromolecular Substances Models, Molecular Molecular Sequence Data Molecules Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Multiprotein Complexes Mutagenesis Protein Structure, Quaternary Protein Structure, Tertiary Proteins Species Specificity Static Electricity Thermodynamics |
title | Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulosome%20Assembly%20Revealed%20by%20the%20Crystal%20Structure%20of%20the%20Cohesin-Dockerin%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carvalho,%20Ana%20L.&rft.date=2003-11-25&rft.volume=100&rft.issue=24&rft.spage=13809&rft.epage=13814&rft.pages=13809-13814&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1936124100&rft_dat=%3Cjstor_cross%3E3148869%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201264742&rft_id=info:pmid/14623971&rft_jstor_id=3148869&rfr_iscdi=true |