Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex

The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.13809-13814
Hauptverfasser: Carvalho, Ana L., Fernando M. V. Dias, José A. M. Prates, Nagy, Tibor, Gilbert, Harry J., Davies, Gideon J., Luís M. A. Ferreira, Romão, Maria J., Carlos M. G. A. Fontes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13814
container_issue 24
container_start_page 13809
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Carvalho, Ana L.
Fernando M. V. Dias
José A. M. Prates
Nagy, Tibor
Gilbert, Harry J.
Davies, Gideon J.
Luís M. A. Ferreira
Romão, Maria J.
Carlos M. G. A. Fontes
description The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.
doi_str_mv 10.1073/pnas.1936124100
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1936124100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148869</jstor_id><sourcerecordid>3148869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmALgei2cOaCUMQBiUPa8Ucc-8ChWj6lSkhQcbWceMJmceKt7VTdf9-sdtUFLj1Zsp935Jkh5BWFcwo1v9iMNp1TzSVlggI8IQsKmpZSaHhKFgCsLpVg4oScprQGAF0peE5OqJCM65ouyK8lej_5kMKAxWVKODR-W_zAW7QeXdFsi7zCYhm3KVtf_MxxavMUsQjd_iGsMPVj-TG0fzD243wxbDzevSDPOusTvjycZ-T686fr5dfy6vuXb8vLq7KtNMulE6rCRvKubZ3VygG1vGkbqNDyrrK11kI66XSjhOpax5kGxhzUCHPHTvIz8mFfdjM1A7oWxxytN5vYDzZuTbC9-fdl7Ffmd7g1TPEK-Jx_d8jHcDNhymboUztPxI4YpmRqKhiHij0KqVZUsnoH3_4H12GK4zwDw4AyKWqxQxd71MaQUsTu4ccUzG6vZrdXc9zrnHjzd6NHf1jkDN4fwC55LAeGCUO5Am26yfuMd3m2xSN2Jq_3ZJ1yiA-GU6GU1PweAR3BiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201264742</pqid></control><display><type>article</type><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</creator><creatorcontrib>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</creatorcontrib><description>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1936124100</identifier><identifier>PMID: 14623971</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Atoms ; Bacteria ; Binding Sites ; Biochemistry ; Biological Sciences ; Cellulase - chemistry ; Cellulase - genetics ; Cellulase - metabolism ; Cellulosomes ; Cloning, Molecular ; Clostridium - enzymology ; Clostridium - genetics ; Clostridium thermocellum ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Enzymes ; Hydrogen bonds ; Ions ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecules ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Multiprotein Complexes ; Mutagenesis ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Proteins ; Species Specificity ; Static Electricity ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13809-13814</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 25, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</citedby><cites>FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148869$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148869$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14623971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Ana L.</creatorcontrib><creatorcontrib>Fernando M. V. Dias</creatorcontrib><creatorcontrib>José A. M. Prates</creatorcontrib><creatorcontrib>Nagy, Tibor</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Davies, Gideon J.</creatorcontrib><creatorcontrib>Luís M. A. Ferreira</creatorcontrib><creatorcontrib>Romão, Maria J.</creatorcontrib><creatorcontrib>Carlos M. G. A. Fontes</creatorcontrib><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</description><subject>Amino Acid Sequence</subject><subject>Atoms</subject><subject>Bacteria</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cellulase - chemistry</subject><subject>Cellulase - genetics</subject><subject>Cellulase - metabolism</subject><subject>Cellulosomes</subject><subject>Cloning, Molecular</subject><subject>Clostridium - enzymology</subject><subject>Clostridium - genetics</subject><subject>Clostridium thermocellum</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Enzymes</subject><subject>Hydrogen bonds</subject><subject>Ions</subject><subject>Macromolecular Substances</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Multiprotein Complexes</subject><subject>Mutagenesis</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Species Specificity</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBmALgei2cOaCUMQBiUPa8Ucc-8ChWj6lSkhQcbWceMJmceKt7VTdf9-sdtUFLj1Zsp935Jkh5BWFcwo1v9iMNp1TzSVlggI8IQsKmpZSaHhKFgCsLpVg4oScprQGAF0peE5OqJCM65ouyK8lej_5kMKAxWVKODR-W_zAW7QeXdFsi7zCYhm3KVtf_MxxavMUsQjd_iGsMPVj-TG0fzD243wxbDzevSDPOusTvjycZ-T686fr5dfy6vuXb8vLq7KtNMulE6rCRvKubZ3VygG1vGkbqNDyrrK11kI66XSjhOpax5kGxhzUCHPHTvIz8mFfdjM1A7oWxxytN5vYDzZuTbC9-fdl7Ffmd7g1TPEK-Jx_d8jHcDNhymboUztPxI4YpmRqKhiHij0KqVZUsnoH3_4H12GK4zwDw4AyKWqxQxd71MaQUsTu4ccUzG6vZrdXc9zrnHjzd6NHf1jkDN4fwC55LAeGCUO5Am26yfuMd3m2xSN2Jq_3ZJ1yiA-GU6GU1PweAR3BiQ</recordid><startdate>20031125</startdate><enddate>20031125</enddate><creator>Carvalho, Ana L.</creator><creator>Fernando M. V. Dias</creator><creator>José A. M. Prates</creator><creator>Nagy, Tibor</creator><creator>Gilbert, Harry J.</creator><creator>Davies, Gideon J.</creator><creator>Luís M. A. Ferreira</creator><creator>Romão, Maria J.</creator><creator>Carlos M. G. A. Fontes</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031125</creationdate><title>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</title><author>Carvalho, Ana L. ; Fernando M. V. Dias ; José A. M. Prates ; Nagy, Tibor ; Gilbert, Harry J. ; Davies, Gideon J. ; Luís M. A. Ferreira ; Romão, Maria J. ; Carlos M. G. A. Fontes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-d485eb63fccda98d01a3bcb05ea3f5a79946d6d9b848fcd329022d07e0361d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Sequence</topic><topic>Atoms</topic><topic>Bacteria</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cellulase - chemistry</topic><topic>Cellulase - genetics</topic><topic>Cellulase - metabolism</topic><topic>Cellulosomes</topic><topic>Cloning, Molecular</topic><topic>Clostridium - enzymology</topic><topic>Clostridium - genetics</topic><topic>Clostridium thermocellum</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Enzymes</topic><topic>Hydrogen bonds</topic><topic>Ions</topic><topic>Macromolecular Substances</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Multiprotein Complexes</topic><topic>Mutagenesis</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Species Specificity</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Ana L.</creatorcontrib><creatorcontrib>Fernando M. V. Dias</creatorcontrib><creatorcontrib>José A. M. Prates</creatorcontrib><creatorcontrib>Nagy, Tibor</creatorcontrib><creatorcontrib>Gilbert, Harry J.</creatorcontrib><creatorcontrib>Davies, Gideon J.</creatorcontrib><creatorcontrib>Luís M. A. Ferreira</creatorcontrib><creatorcontrib>Romão, Maria J.</creatorcontrib><creatorcontrib>Carlos M. G. A. Fontes</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Ana L.</au><au>Fernando M. V. Dias</au><au>José A. M. Prates</au><au>Nagy, Tibor</au><au>Gilbert, Harry J.</au><au>Davies, Gideon J.</au><au>Luís M. A. Ferreira</au><au>Romão, Maria J.</au><au>Carlos M. G. A. Fontes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-25</date><risdate>2003</risdate><volume>100</volume><issue>24</issue><spage>13809</spage><epage>13814</epage><pages>13809-13814</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the "cellulosome," for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose "cohesin" domains interact with corresponding "dockerin" domains of the enzymes. Here we report the structure of the cohesin-dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop-helix-helix-loop-helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both "halves" of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of "polycellulosomes." The structure provides an explanation for the lack of cross-species recognition between cohesin-dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14623971</pmid><doi>10.1073/pnas.1936124100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13809-13814
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1936124100
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Atoms
Bacteria
Binding Sites
Biochemistry
Biological Sciences
Cellulase - chemistry
Cellulase - genetics
Cellulase - metabolism
Cellulosomes
Cloning, Molecular
Clostridium - enzymology
Clostridium - genetics
Clostridium thermocellum
Crystal structure
Crystallography, X-Ray
Crystals
Enzymes
Hydrogen bonds
Ions
Macromolecular Substances
Models, Molecular
Molecular Sequence Data
Molecules
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Multiprotein Complexes
Mutagenesis
Protein Structure, Quaternary
Protein Structure, Tertiary
Proteins
Species Specificity
Static Electricity
Thermodynamics
title Cellulosome Assembly Revealed by the Crystal Structure of the Cohesin-Dockerin Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulosome%20Assembly%20Revealed%20by%20the%20Crystal%20Structure%20of%20the%20Cohesin-Dockerin%20Complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carvalho,%20Ana%20L.&rft.date=2003-11-25&rft.volume=100&rft.issue=24&rft.spage=13809&rft.epage=13814&rft.pages=13809-13814&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1936124100&rft_dat=%3Cjstor_cross%3E3148869%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201264742&rft_id=info:pmid/14623971&rft_jstor_id=3148869&rfr_iscdi=true