Functional lipid pairs as building blocks of phase-separated membranes

Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the later...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (9), p.4749-4757
Hauptverfasser: Soloviov, Dmytro, Cai, Yong Q., Bolmatov, Dima, Suvorov, Alexey, Zhernenkov, Kirill, Zav’yalov, Dmitry, Bosak, Alexey, Uchiyama, Hiroshi, Zhernenkov, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4757
container_issue 9
container_start_page 4749
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Soloviov, Dmytro
Cai, Yong Q.
Bolmatov, Dima
Suvorov, Alexey
Zhernenkov, Kirill
Zav’yalov, Dmitry
Bosak, Alexey
Uchiyama, Hiroshi
Zhernenkov, Mikhail
description Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.
doi_str_mv 10.1073/pnas.1919264117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1919264117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929170</jstor_id><sourcerecordid>26929170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS1ERZfCmRMoKue044-14wsSqrqlUiUucLZsx-l6ydrB41TivyerLQuc3mF-8-ZpHiHvKFxRUPx6ShavqKaaSUGpekFWFDRtpdDwkqwAmGo7wcQ5eY24AwC97uAVOecMFGVCr8hmMydfY052bMY4xb6ZbCzYWGzcHMc-psfGjdn_wCYPzbS1GFoMky22hr7Zh70rNgV8Q84GO2J4-6wX5Pvm9tvNl_bh6939zeeH1gsFtR2c5ZJTJ0MI1PdSKMk1UAZraxU4rqQMAJ2X4GBYB-YPyvpOCcXo2jl-QT4dfafZ7UPvQ6rFjmYqcW_LL5NtNP9PUtyax_xkFEiQXbcYXB4NMtZo0Mca_NbnlIKvhsrlRZ1aoI_PV0r-OQesZpfnsrwIDeOq01pQOFhdHylfMmIJwykGBXNoxxzaMX_bWTY-_Jv-xP-pYwHeH4Ed1lxOcyY101QB_w1OC5T7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378994108</pqid></control><display><type>article</type><title>Functional lipid pairs as building blocks of phase-separated membranes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail</creator><creatorcontrib>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1919264117</identifier><identifier>PMID: 32071249</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>60 APPLIED LIFE SCIENCES ; Biological membranes ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; Chemical Phenomena ; Cholesterol ; Cholesterol - chemistry ; Domains ; Heterogeneity ; Inelastic scattering ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid nanoclusters ; lipid pairs ; Lipid rafts ; Lipids ; Membrane Lipids - chemistry ; Membranes ; Molecular dynamics ; optical phonons ; Phase separation ; phononic gaps ; Phonons ; Phosphocholine ; picosecond membranes dynamics ; Protein interaction ; Separation processes ; Temporal resolution ; X-ray scattering</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (9), p.4749-4757</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 3, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</citedby><cites>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</cites><orcidid>0000-0003-3604-0672 ; 0000000336040672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929170$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929170$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32071249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600087$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviov, Dmytro</creatorcontrib><creatorcontrib>Cai, Yong Q.</creatorcontrib><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Suvorov, Alexey</creatorcontrib><creatorcontrib>Zhernenkov, Kirill</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Bosak, Alexey</creatorcontrib><creatorcontrib>Uchiyama, Hiroshi</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Functional lipid pairs as building blocks of phase-separated membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Biological membranes</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Chemical Phenomena</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Domains</subject><subject>Heterogeneity</subject><subject>Inelastic scattering</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid nanoclusters</subject><subject>lipid pairs</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Membrane Lipids - chemistry</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>optical phonons</subject><subject>Phase separation</subject><subject>phononic gaps</subject><subject>Phonons</subject><subject>Phosphocholine</subject><subject>picosecond membranes dynamics</subject><subject>Protein interaction</subject><subject>Separation processes</subject><subject>Temporal resolution</subject><subject>X-ray scattering</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS1ERZfCmRMoKue044-14wsSqrqlUiUucLZsx-l6ydrB41TivyerLQuc3mF-8-ZpHiHvKFxRUPx6ShavqKaaSUGpekFWFDRtpdDwkqwAmGo7wcQ5eY24AwC97uAVOecMFGVCr8hmMydfY052bMY4xb6ZbCzYWGzcHMc-psfGjdn_wCYPzbS1GFoMky22hr7Zh70rNgV8Q84GO2J4-6wX5Pvm9tvNl_bh6939zeeH1gsFtR2c5ZJTJ0MI1PdSKMk1UAZraxU4rqQMAJ2X4GBYB-YPyvpOCcXo2jl-QT4dfafZ7UPvQ6rFjmYqcW_LL5NtNP9PUtyax_xkFEiQXbcYXB4NMtZo0Mca_NbnlIKvhsrlRZ1aoI_PV0r-OQesZpfnsrwIDeOq01pQOFhdHylfMmIJwykGBXNoxxzaMX_bWTY-_Jv-xP-pYwHeH4Ed1lxOcyY101QB_w1OC5T7</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Soloviov, Dmytro</creator><creator>Cai, Yong Q.</creator><creator>Bolmatov, Dima</creator><creator>Suvorov, Alexey</creator><creator>Zhernenkov, Kirill</creator><creator>Zav’yalov, Dmitry</creator><creator>Bosak, Alexey</creator><creator>Uchiyama, Hiroshi</creator><creator>Zhernenkov, Mikhail</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3604-0672</orcidid><orcidid>https://orcid.org/0000000336040672</orcidid></search><sort><creationdate>20200303</creationdate><title>Functional lipid pairs as building blocks of phase-separated membranes</title><author>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Biological membranes</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Chemical Phenomena</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Domains</topic><topic>Heterogeneity</topic><topic>Inelastic scattering</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid nanoclusters</topic><topic>lipid pairs</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Membrane Lipids - chemistry</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>optical phonons</topic><topic>Phase separation</topic><topic>phononic gaps</topic><topic>Phonons</topic><topic>Phosphocholine</topic><topic>picosecond membranes dynamics</topic><topic>Protein interaction</topic><topic>Separation processes</topic><topic>Temporal resolution</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviov, Dmytro</creatorcontrib><creatorcontrib>Cai, Yong Q.</creatorcontrib><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Suvorov, Alexey</creatorcontrib><creatorcontrib>Zhernenkov, Kirill</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Bosak, Alexey</creatorcontrib><creatorcontrib>Uchiyama, Hiroshi</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviov, Dmytro</au><au>Cai, Yong Q.</au><au>Bolmatov, Dima</au><au>Suvorov, Alexey</au><au>Zhernenkov, Kirill</au><au>Zav’yalov, Dmitry</au><au>Bosak, Alexey</au><au>Uchiyama, Hiroshi</au><au>Zhernenkov, Mikhail</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional lipid pairs as building blocks of phase-separated membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-03</date><risdate>2020</risdate><volume>117</volume><issue>9</issue><spage>4749</spage><epage>4757</epage><pages>4749-4757</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32071249</pmid><doi>10.1073/pnas.1919264117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3604-0672</orcidid><orcidid>https://orcid.org/0000000336040672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (9), p.4749-4757
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1919264117
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 60 APPLIED LIFE SCIENCES
Biological membranes
Biological Sciences
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell membranes
Chemical Phenomena
Cholesterol
Cholesterol - chemistry
Domains
Heterogeneity
Inelastic scattering
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
lipid nanoclusters
lipid pairs
Lipid rafts
Lipids
Membrane Lipids - chemistry
Membranes
Molecular dynamics
optical phonons
Phase separation
phononic gaps
Phonons
Phosphocholine
picosecond membranes dynamics
Protein interaction
Separation processes
Temporal resolution
X-ray scattering
title Functional lipid pairs as building blocks of phase-separated membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20lipid%20pairs%20as%20building%20blocks%20of%20phase-separated%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soloviov,%20Dmytro&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-03-03&rft.volume=117&rft.issue=9&rft.spage=4749&rft.epage=4757&rft.pages=4749-4757&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1919264117&rft_dat=%3Cjstor_pubme%3E26929170%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378994108&rft_id=info:pmid/32071249&rft_jstor_id=26929170&rfr_iscdi=true