Functional lipid pairs as building blocks of phase-separated membranes
Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the later...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (9), p.4749-4757 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4757 |
---|---|
container_issue | 9 |
container_start_page | 4749 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Soloviov, Dmytro Cai, Yong Q. Bolmatov, Dima Suvorov, Alexey Zhernenkov, Kirill Zav’yalov, Dmitry Bosak, Alexey Uchiyama, Hiroshi Zhernenkov, Mikhail |
description | Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution. |
doi_str_mv | 10.1073/pnas.1919264117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1919264117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26929170</jstor_id><sourcerecordid>26929170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS1ERZfCmRMoKue044-14wsSqrqlUiUucLZsx-l6ydrB41TivyerLQuc3mF-8-ZpHiHvKFxRUPx6ShavqKaaSUGpekFWFDRtpdDwkqwAmGo7wcQ5eY24AwC97uAVOecMFGVCr8hmMydfY052bMY4xb6ZbCzYWGzcHMc-psfGjdn_wCYPzbS1GFoMky22hr7Zh70rNgV8Q84GO2J4-6wX5Pvm9tvNl_bh6939zeeH1gsFtR2c5ZJTJ0MI1PdSKMk1UAZraxU4rqQMAJ2X4GBYB-YPyvpOCcXo2jl-QT4dfafZ7UPvQ6rFjmYqcW_LL5NtNP9PUtyax_xkFEiQXbcYXB4NMtZo0Mca_NbnlIKvhsrlRZ1aoI_PV0r-OQesZpfnsrwIDeOq01pQOFhdHylfMmIJwykGBXNoxxzaMX_bWTY-_Jv-xP-pYwHeH4Ed1lxOcyY101QB_w1OC5T7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378994108</pqid></control><display><type>article</type><title>Functional lipid pairs as building blocks of phase-separated membranes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail</creator><creatorcontrib>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1919264117</identifier><identifier>PMID: 32071249</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>60 APPLIED LIFE SCIENCES ; Biological membranes ; Biological Sciences ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell membranes ; Chemical Phenomena ; Cholesterol ; Cholesterol - chemistry ; Domains ; Heterogeneity ; Inelastic scattering ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid nanoclusters ; lipid pairs ; Lipid rafts ; Lipids ; Membrane Lipids - chemistry ; Membranes ; Molecular dynamics ; optical phonons ; Phase separation ; phononic gaps ; Phonons ; Phosphocholine ; picosecond membranes dynamics ; Protein interaction ; Separation processes ; Temporal resolution ; X-ray scattering</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (9), p.4749-4757</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Mar 3, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</citedby><cites>FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</cites><orcidid>0000-0003-3604-0672 ; 0000000336040672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26929170$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26929170$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32071249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600087$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Soloviov, Dmytro</creatorcontrib><creatorcontrib>Cai, Yong Q.</creatorcontrib><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Suvorov, Alexey</creatorcontrib><creatorcontrib>Zhernenkov, Kirill</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Bosak, Alexey</creatorcontrib><creatorcontrib>Uchiyama, Hiroshi</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Functional lipid pairs as building blocks of phase-separated membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Biological membranes</subject><subject>Biological Sciences</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Chemical Phenomena</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Domains</subject><subject>Heterogeneity</subject><subject>Inelastic scattering</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid nanoclusters</subject><subject>lipid pairs</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Membrane Lipids - chemistry</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>optical phonons</subject><subject>Phase separation</subject><subject>phononic gaps</subject><subject>Phonons</subject><subject>Phosphocholine</subject><subject>picosecond membranes dynamics</subject><subject>Protein interaction</subject><subject>Separation processes</subject><subject>Temporal resolution</subject><subject>X-ray scattering</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS1ERZfCmRMoKue044-14wsSqrqlUiUucLZsx-l6ydrB41TivyerLQuc3mF-8-ZpHiHvKFxRUPx6ShavqKaaSUGpekFWFDRtpdDwkqwAmGo7wcQ5eY24AwC97uAVOecMFGVCr8hmMydfY052bMY4xb6ZbCzYWGzcHMc-psfGjdn_wCYPzbS1GFoMky22hr7Zh70rNgV8Q84GO2J4-6wX5Pvm9tvNl_bh6939zeeH1gsFtR2c5ZJTJ0MI1PdSKMk1UAZraxU4rqQMAJ2X4GBYB-YPyvpOCcXo2jl-QT4dfafZ7UPvQ6rFjmYqcW_LL5NtNP9PUtyax_xkFEiQXbcYXB4NMtZo0Mca_NbnlIKvhsrlRZ1aoI_PV0r-OQesZpfnsrwIDeOq01pQOFhdHylfMmIJwykGBXNoxxzaMX_bWTY-_Jv-xP-pYwHeH4Ed1lxOcyY101QB_w1OC5T7</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Soloviov, Dmytro</creator><creator>Cai, Yong Q.</creator><creator>Bolmatov, Dima</creator><creator>Suvorov, Alexey</creator><creator>Zhernenkov, Kirill</creator><creator>Zav’yalov, Dmitry</creator><creator>Bosak, Alexey</creator><creator>Uchiyama, Hiroshi</creator><creator>Zhernenkov, Mikhail</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3604-0672</orcidid><orcidid>https://orcid.org/0000000336040672</orcidid></search><sort><creationdate>20200303</creationdate><title>Functional lipid pairs as building blocks of phase-separated membranes</title><author>Soloviov, Dmytro ; Cai, Yong Q. ; Bolmatov, Dima ; Suvorov, Alexey ; Zhernenkov, Kirill ; Zav’yalov, Dmitry ; Bosak, Alexey ; Uchiyama, Hiroshi ; Zhernenkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-fba3631b6eee1cd64763901205aa70b3766e008c60b0f5e2c0b0f2d8747215bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Biological membranes</topic><topic>Biological Sciences</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Chemical Phenomena</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Domains</topic><topic>Heterogeneity</topic><topic>Inelastic scattering</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid nanoclusters</topic><topic>lipid pairs</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Membrane Lipids - chemistry</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>optical phonons</topic><topic>Phase separation</topic><topic>phononic gaps</topic><topic>Phonons</topic><topic>Phosphocholine</topic><topic>picosecond membranes dynamics</topic><topic>Protein interaction</topic><topic>Separation processes</topic><topic>Temporal resolution</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soloviov, Dmytro</creatorcontrib><creatorcontrib>Cai, Yong Q.</creatorcontrib><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Suvorov, Alexey</creatorcontrib><creatorcontrib>Zhernenkov, Kirill</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Bosak, Alexey</creatorcontrib><creatorcontrib>Uchiyama, Hiroshi</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soloviov, Dmytro</au><au>Cai, Yong Q.</au><au>Bolmatov, Dima</au><au>Suvorov, Alexey</au><au>Zhernenkov, Kirill</au><au>Zav’yalov, Dmitry</au><au>Bosak, Alexey</au><au>Uchiyama, Hiroshi</au><au>Zhernenkov, Mikhail</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional lipid pairs as building blocks of phase-separated membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-03-03</date><risdate>2020</risdate><volume>117</volume><issue>9</issue><spage>4749</spage><epage>4757</epage><pages>4749-4757</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Biological membranes exhibit a great deal of compositional and phase heterogeneity due to hundreds of chemically distinct components. As a result, phase separation processes in cell membranes are extremely difficult to study, especially at the molecular level. It is currently believed that the lateral membrane heterogeneity and the formation of domains, or rafts, are driven by lipid–lipid and lipid–protein interactions. Nevertheless, the underlying mechanisms regulating membrane heterogeneity remain poorly understood. In the present work, we combine inelastic X-ray scattering with molecular dynamics simulations to provide direct evidence for the existence of strongly coupled transient lipid pairs. These lipid pairs manifest themselves experimentally through optical vibrational (a.k.a. phononic) modes observed in binary (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]–cholesterol) and ternary (DPPC–1, 2-dioleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoylglycero-3-phosphocholine [DOPC/POPC]–cholesterol) systems. The existence of a phononic gap in these vibrational modes is a direct result of the finite size of patches formed by these lipid pairs. The observation of lipid pairs provides a spatial (subnanometer) and temporal (subnanosecond) window into the lipid–lipid interactions in complex mixtures of saturated/unsaturated lipids and cholesterol. Our findings represent a step toward understanding the lateral organization and dynamics of membrane domains using a well-validated probe with a high spatial and temporal resolution.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32071249</pmid><doi>10.1073/pnas.1919264117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3604-0672</orcidid><orcidid>https://orcid.org/0000000336040672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-03, Vol.117 (9), p.4749-4757 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1919264117 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 60 APPLIED LIFE SCIENCES Biological membranes Biological Sciences Cell Membrane - chemistry Cell Membrane - metabolism Cell membranes Chemical Phenomena Cholesterol Cholesterol - chemistry Domains Heterogeneity Inelastic scattering Lipid Bilayers - chemistry Lipid Bilayers - metabolism lipid nanoclusters lipid pairs Lipid rafts Lipids Membrane Lipids - chemistry Membranes Molecular dynamics optical phonons Phase separation phononic gaps Phonons Phosphocholine picosecond membranes dynamics Protein interaction Separation processes Temporal resolution X-ray scattering |
title | Functional lipid pairs as building blocks of phase-separated membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20lipid%20pairs%20as%20building%20blocks%20of%20phase-separated%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Soloviov,%20Dmytro&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2020-03-03&rft.volume=117&rft.issue=9&rft.spage=4749&rft.epage=4757&rft.pages=4749-4757&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1919264117&rft_dat=%3Cjstor_pubme%3E26929170%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378994108&rft_id=info:pmid/32071249&rft_jstor_id=26929170&rfr_iscdi=true |