Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning
Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential r...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2016-03, Vol.113 (10), p.E1382-E1391 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1391 |
---|---|
container_issue | 10 |
container_start_page | E1382 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 113 |
creator | Barre, Alexander Berthoux, Coralie De Bundel, Dimitri Valjent, Emmanuel Bockaert, Joël Marin, Philippe Bécamel, Carine |
description | Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions. |
doi_str_mv | 10.1073/pnas.1525586113 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1525586113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26468636</jstor_id><sourcerecordid>26468636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-1bd46b66eff57b03d7aa776bbf9a37af75e4a59d45f04f02b2bb4889f56828163</originalsourceid><addsrcrecordid>eNqNkkuP0zAURi0EYkphzQoUiQ0sOnP9djYjVaN5IFWCBaytm8SZpkriYCeV-u9x1FKGWbGyZZ97bH36CHlP4ZKC5ldDj_GSSialUZTyF2RBIacrJXJ4SRYATK-MYOKCvIlxBwC5NPCaXDCVA1cMFsR-Dy4eehzGpsyiC370fdNnbJ0FV7ph9CFmna-mFkeXjVtssfOlD4nGNhtajGnXjIcM-yrDGH3Z4NjsXdY6DEn0-Ja8qrGN7t1pXZKfd7c_bh5Wm2_3X2_Wm1UpuRxXtKiEKpRydS11AbzSiFqroqhz5BprLZ1AmVdC1iBqYAUrCmFMXktlmKGKL8n10TtMReeq0vVjwNYOoekwHKzHxv570zdb--j3VuicQopySb4cBdtnYw_rjZ3PgOYpSWn2NLGfT48F_2tycbRdE0vXttg7P0VLtQEJFAz_D1QzKoSWM_rpGbrzU-hTajMlOGe5Mom6OlJl8DEGV58_S8HOnbBzJ-zfTqSJj0-jOfN_SpCA7ATMk2cd5bPylnLDEvLhiOxiqsQThVBGccV_Az1Wx58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774332968</pqid></control><display><type>article</type><title>Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barre, Alexander ; Berthoux, Coralie ; De Bundel, Dimitri ; Valjent, Emmanuel ; Bockaert, Joël ; Marin, Philippe ; Bécamel, Carine</creator><creatorcontrib>Barre, Alexander ; Berthoux, Coralie ; De Bundel, Dimitri ; Valjent, Emmanuel ; Bockaert, Joël ; Marin, Philippe ; Bécamel, Carine</creatorcontrib><description>Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1525586113</identifier><identifier>PMID: 26903620</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal cognition ; Animals ; Association Learning - physiology ; Biological Sciences ; Blotting, Western ; Brain ; Cerebral Cortex - metabolism ; Cerebral Cortex - physiology ; Electrophysiological Phenomena ; Life Sciences ; Mice, Inbred C57BL ; Mice, Knockout ; Microscopy, Fluorescence ; Neurology ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Neuropsychology ; PNAS Plus ; Prefrontal Cortex - metabolism ; Prefrontal Cortex - physiology ; Protein Kinase C - metabolism ; Rats, Sprague-Dawley ; Receptor, Serotonin, 5-HT2A - genetics ; Receptor, Serotonin, 5-HT2A - metabolism ; Receptor, Serotonin, 5-HT2A - physiology ; Receptors, N-Methyl-D-Aspartate - metabolism ; Receptors, N-Methyl-D-Aspartate - physiology ; Rodents ; Schizophrenia ; Serotonin ; Synapses - metabolism ; Synapses - physiology ; Synaptic Transmission - genetics ; Synaptic Transmission - physiology ; Thalamus - metabolism ; Thalamus - physiology ; Type C Phospholipases - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (10), p.E1382-E1391</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 8, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-1bd46b66eff57b03d7aa776bbf9a37af75e4a59d45f04f02b2bb4889f56828163</citedby><cites>FETCH-LOGICAL-c535t-1bd46b66eff57b03d7aa776bbf9a37af75e4a59d45f04f02b2bb4889f56828163</cites><orcidid>0000-0001-8226-9529 ; 0000-0002-1034-606X ; 0000-0001-7385-681X ; 0000-0002-5977-7274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26468636$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26468636$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26903620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01942458$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Barre, Alexander</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>De Bundel, Dimitri</creatorcontrib><creatorcontrib>Valjent, Emmanuel</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Marin, Philippe</creatorcontrib><creatorcontrib>Bécamel, Carine</creatorcontrib><title>Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.</description><subject>Animal cognition</subject><subject>Animals</subject><subject>Association Learning - physiology</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - physiology</subject><subject>Electrophysiological Phenomena</subject><subject>Life Sciences</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microscopy, Fluorescence</subject><subject>Neurology</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuropsychology</subject><subject>PNAS Plus</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Prefrontal Cortex - physiology</subject><subject>Protein Kinase C - metabolism</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Serotonin, 5-HT2A - genetics</subject><subject>Receptor, Serotonin, 5-HT2A - metabolism</subject><subject>Receptor, Serotonin, 5-HT2A - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Rodents</subject><subject>Schizophrenia</subject><subject>Serotonin</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - genetics</subject><subject>Synaptic Transmission - physiology</subject><subject>Thalamus - metabolism</subject><subject>Thalamus - physiology</subject><subject>Type C Phospholipases - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkuP0zAURi0EYkphzQoUiQ0sOnP9djYjVaN5IFWCBaytm8SZpkriYCeV-u9x1FKGWbGyZZ97bH36CHlP4ZKC5ldDj_GSSialUZTyF2RBIacrJXJ4SRYATK-MYOKCvIlxBwC5NPCaXDCVA1cMFsR-Dy4eehzGpsyiC370fdNnbJ0FV7ph9CFmna-mFkeXjVtssfOlD4nGNhtajGnXjIcM-yrDGH3Z4NjsXdY6DEn0-Ja8qrGN7t1pXZKfd7c_bh5Wm2_3X2_Wm1UpuRxXtKiEKpRydS11AbzSiFqroqhz5BprLZ1AmVdC1iBqYAUrCmFMXktlmKGKL8n10TtMReeq0vVjwNYOoekwHKzHxv570zdb--j3VuicQopySb4cBdtnYw_rjZ3PgOYpSWn2NLGfT48F_2tycbRdE0vXttg7P0VLtQEJFAz_D1QzKoSWM_rpGbrzU-hTajMlOGe5Mom6OlJl8DEGV58_S8HOnbBzJ-zfTqSJj0-jOfN_SpCA7ATMk2cd5bPylnLDEvLhiOxiqsQThVBGccV_Az1Wx58</recordid><startdate>20160308</startdate><enddate>20160308</enddate><creator>Barre, Alexander</creator><creator>Berthoux, Coralie</creator><creator>De Bundel, Dimitri</creator><creator>Valjent, Emmanuel</creator><creator>Bockaert, Joël</creator><creator>Marin, Philippe</creator><creator>Bécamel, Carine</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0002-1034-606X</orcidid><orcidid>https://orcid.org/0000-0001-7385-681X</orcidid><orcidid>https://orcid.org/0000-0002-5977-7274</orcidid></search><sort><creationdate>20160308</creationdate><title>Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning</title><author>Barre, Alexander ; Berthoux, Coralie ; De Bundel, Dimitri ; Valjent, Emmanuel ; Bockaert, Joël ; Marin, Philippe ; Bécamel, Carine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-1bd46b66eff57b03d7aa776bbf9a37af75e4a59d45f04f02b2bb4889f56828163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal cognition</topic><topic>Animals</topic><topic>Association Learning - physiology</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - physiology</topic><topic>Electrophysiological Phenomena</topic><topic>Life Sciences</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microscopy, Fluorescence</topic><topic>Neurology</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuropsychology</topic><topic>PNAS Plus</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Prefrontal Cortex - physiology</topic><topic>Protein Kinase C - metabolism</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Serotonin, 5-HT2A - genetics</topic><topic>Receptor, Serotonin, 5-HT2A - metabolism</topic><topic>Receptor, Serotonin, 5-HT2A - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Rodents</topic><topic>Schizophrenia</topic><topic>Serotonin</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - genetics</topic><topic>Synaptic Transmission - physiology</topic><topic>Thalamus - metabolism</topic><topic>Thalamus - physiology</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barre, Alexander</creatorcontrib><creatorcontrib>Berthoux, Coralie</creatorcontrib><creatorcontrib>De Bundel, Dimitri</creatorcontrib><creatorcontrib>Valjent, Emmanuel</creatorcontrib><creatorcontrib>Bockaert, Joël</creatorcontrib><creatorcontrib>Marin, Philippe</creatorcontrib><creatorcontrib>Bécamel, Carine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barre, Alexander</au><au>Berthoux, Coralie</au><au>De Bundel, Dimitri</au><au>Valjent, Emmanuel</au><au>Bockaert, Joël</au><au>Marin, Philippe</au><au>Bécamel, Carine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-03-08</date><risdate>2016</risdate><volume>113</volume><issue>10</issue><spage>E1382</spage><epage>E1391</epage><pages>E1382-E1391</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26903620</pmid><doi>10.1073/pnas.1525586113</doi><orcidid>https://orcid.org/0000-0001-8226-9529</orcidid><orcidid>https://orcid.org/0000-0002-1034-606X</orcidid><orcidid>https://orcid.org/0000-0001-7385-681X</orcidid><orcidid>https://orcid.org/0000-0002-5977-7274</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2016-03, Vol.113 (10), p.E1382-E1391 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1525586113 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animal cognition Animals Association Learning - physiology Biological Sciences Blotting, Western Brain Cerebral Cortex - metabolism Cerebral Cortex - physiology Electrophysiological Phenomena Life Sciences Mice, Inbred C57BL Mice, Knockout Microscopy, Fluorescence Neurology Neuronal Plasticity - genetics Neuronal Plasticity - physiology Neuropsychology PNAS Plus Prefrontal Cortex - metabolism Prefrontal Cortex - physiology Protein Kinase C - metabolism Rats, Sprague-Dawley Receptor, Serotonin, 5-HT2A - genetics Receptor, Serotonin, 5-HT2A - metabolism Receptor, Serotonin, 5-HT2A - physiology Receptors, N-Methyl-D-Aspartate - metabolism Receptors, N-Methyl-D-Aspartate - physiology Rodents Schizophrenia Serotonin Synapses - metabolism Synapses - physiology Synaptic Transmission - genetics Synaptic Transmission - physiology Thalamus - metabolism Thalamus - physiology Type C Phospholipases - metabolism |
title | Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presynaptic%20serotonin%202A%20receptors%20modulate%20thalamocortical%20plasticity%20and%20associative%20learning&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Barre,%20Alexander&rft.date=2016-03-08&rft.volume=113&rft.issue=10&rft.spage=E1382&rft.epage=E1391&rft.pages=E1382-E1391&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1525586113&rft_dat=%3Cjstor_cross%3E26468636%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774332968&rft_id=info:pmid/26903620&rft_jstor_id=26468636&rfr_iscdi=true |